Skip to main content

Web-Based Resources to Investigate Protease Function

  • Protocol
  • First Online:
Proteases and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2747))

  • 349 Accesses

Abstract

In 2001, the release of the first draft of the human genome marked the beginning of the Big Data era for biological sciences. Since then, the complexity of datasets generated by laboratories worldwide has increased exponentially. Public repositories such as the Protein Data Bank, which has exceeded the 200000 entries in 2023, have been instrumental not only to collect, organize, and distill this enormous research output but also to promote further research enterprises. The achievements of artificial intelligence programs such as AlphaFold would not have been possible without the collective efforts of countless researchers who made their work publicly available. Here, I provide a practical, but far from exhaustive, list of resources useful to investigate protease function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  PubMed  Google Scholar 

  2. Zhou Y, Zhou B, Pache L et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10(1):1523

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ochoa D, Hercules A, Carmona M et al (2023) The next-generation open targets platform: reimagined, redesigned, rebuilt. Nucleic Acids Res 51(D1):D1353–D1359

    Article  PubMed  Google Scholar 

  4. Landrum MJ, Chitipiralla S, Brown GR et al (2020) ClinVar: improvements to accessing data. Nucleic Acids Res 48(D1):D835–D844

    Article  CAS  PubMed  Google Scholar 

  5. Tate JG, Bamford S, Jubb HC et al (2019) COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 47(D1):D941–D947

    Article  CAS  PubMed  Google Scholar 

  6. Grossman RL, Heath AP, Ferretti V et al (2016) Toward a shared vision for cancer genomic data. N Engl J Med 375(12):1109–1112

    Article  PubMed  PubMed Central  Google Scholar 

  7. Groza T, Gomez FL, Mashhadi HH et al (2023) The International Mouse Phenotyping Consortium: comprehensive knockout phenotyping underpinning the study of human disease. Nucleic Acids Res 51(D1):D1038–D1045

    Article  CAS  PubMed  Google Scholar 

  8. Krupke DM, Begley DA, Sundberg JP et al (2017) The mouse tumor biology database: a comprehensive resource for mouse models of human cancer. Cancer Res 77(21):e67–e70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Uhlén M, Fagerberg L, Hallström BM et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419

    Article  PubMed  Google Scholar 

  10. GTEx Consortium (2013) The Genotype-Tissue Expression (GTEx) project. Nat Genet 45(6):580–585

    Article  Google Scholar 

  11. Chang A, Jeske L, Ulbrich S et al (2021) BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids Res 49(D1):D498–D508

    Article  CAS  PubMed  Google Scholar 

  12. Rawlings ND, Barrett AJ, Thomas PD et al (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46(D1):D624–D632

    Article  CAS  PubMed  Google Scholar 

  13. Santamaria S, Buemi F, Nuti E et al (2021) Development of a fluorogenic ADAMTS-7 substrate. J Enzyme Inhib Med Chem 36(1):2160–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Santamaria S, Nagase H (2018) Measurement of protease activities using fluorogenic substrates. Methods Mol Biol 1731:107–122

    Article  CAS  PubMed  Google Scholar 

  15. Cuffaro D, Ciccone L, Rossello A et al (2022) Targeting aggrecanases for osteoarthritis therapy: from zinc chelation to exosite inhibition. J Med Chem 65(20):13505–13532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schechter I, Berger A (1967) On the size of the active site in proteases. I Papain. Biochem Biophys Res Commun 27(2):157–162

    Article  CAS  PubMed  Google Scholar 

  17. Colaert N, Helsens K, Martens L et al (2009) Improved visualization of protein consensus sequences by iceLogo. Nat Methods 6(11):786–787

    Article  CAS  PubMed  Google Scholar 

  18. Crooks GE, Hon G, Chandonia JM et al (2004) WebLogo: A sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pérez-Silva JG, Español Y, Velasco G et al (2016) The Degradome database: expanding roles of mammalian proteases in life and disease. Nucleic Acids Res 44(D1):D351–D355

    Article  PubMed  Google Scholar 

  20. Thomas PD, Ebert D, Muruganujan A et al (2022) PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci 31(1):8–22

    Article  CAS  PubMed  Google Scholar 

  21. Duvaud S, Gabella C, Lisacek F et al (2021) Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res 49(W1):W216–W227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gupta R, Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput:310–322

    Google Scholar 

  23. Taherzadeh G, Dehzangi A, Golchin M et al (2019) SPRINT-Gly: predicting N- and O-linked glycosylation sites of human and mouse proteins by using sequence and predicted structural properties. Bioinformatics 35(20):4140–4146

    Article  CAS  PubMed  Google Scholar 

  24. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294(5):1351–1362

    Article  CAS  PubMed  Google Scholar 

  25. Madeira F, Pearce M, Tivey ARN et al (2022) Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res 50(W1):W276–W279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klein J, Eales J, Zürbig P et al (2013) Proteasix: a tool for automated and large-scale prediction of proteases involved in naturally occurring peptide generation. Proteomics 13(7):1077–1082

    Article  CAS  PubMed  Google Scholar 

  27. Burley SK, Bhikadiya C, Bi C et al (2023) RCSB protein data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res 51(D1):D488–D508

    Article  CAS  PubMed  Google Scholar 

  28. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera – a visualization system for exploratory research and analysis. Comput Chem 25(13):1605–1612

    Article  CAS  Google Scholar 

  29. Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43(W1):W174–W181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kryshtafovych A, Schwede T, Topf M et al (2019) Critical assessment of methods of protein structure prediction (CASP)-Round XIII. Proteins 87:1011–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng W, Zhang C, Li Y et al (2021) Folding non-homology proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Rep Methods 1:100014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bienert S, Waterhouse A, de Beer TA et al (2017) The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res 45(D1):D313–D319

    Article  CAS  PubMed  Google Scholar 

  34. Oughtred R, Rust J, Chang C et al (2021) The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci 30(1):187–200

    Article  CAS  PubMed  Google Scholar 

  35. Orchard S, Ammari M, Aranda B et al (2014) The MIntAct project – IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42(Database issue):D358–D363

    Article  CAS  PubMed  Google Scholar 

  36. Szklarczyk D, Kirsch R, Koutrouli M et al (2023) The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 51(D1):D638–D646

    Article  CAS  PubMed  Google Scholar 

  37. Fortelny N, Yang S, Pavlidis P et al (2015) Proteome TopFIND 3.0 with TopFINDer and PathFINDer: database and analysis tools for the association of protein termini to pre- and posttranslational events. Nucl. Acids Res. 43:D290–D297

    Article  CAS  PubMed  Google Scholar 

  38. Naba A (2023) Ten years of extracellular matrix proteomics: accomplishments, challenges, and future perspectives. Mol Cell Proteomics 22(4):100528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shao X, Gomez CD, Kapoor N et al (2023) MatrisomeDB 2.0: 2023 updates to the ECM-protein knowledge database. Nucl Acids Res 51:D1519–D1530

    Article  PubMed  Google Scholar 

  40. Clerc O, Deniaud M, Vallet SD et al (2019) MatrixDB: integration of new data with a focus on glycosaminoglycan interactions. Nucl. Acids Res 47:D376–D381

    Article  CAS  PubMed  Google Scholar 

  41. Kontio J, Soñora VR, Pesola V et al (2022) Analysis of extracellular matrix network dynamics in cancer using the MatriNet database. Matrix Biol 110:141–150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Santamaria Lab is supported by the British Heart Foundation (FS/IBSRF/20/25032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Santamaria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Santamaria, S. (2024). Web-Based Resources to Investigate Protease Function. In: Santamaria, S. (eds) Proteases and Cancer. Methods in Molecular Biology, vol 2747. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3589-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3589-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3588-9

  • Online ISBN: 978-1-0716-3589-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics