Skip to main content

Identifying Key In Silico Knockout for Enhancement of Limonene Yield Through Dynamic Metabolic Modelling

  • Protocol
  • First Online:
Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2745))

Abstract

Living cells display dynamic and complex behaviors. To understand their response and to infer novel insights not possible with traditional reductionist approaches, over the last few decades various computational modelling methodologies have been developed. In this chapter, we focus on modelling the dynamic metabolic response, using linear and nonlinear ordinary differential equations, of an engineered Escherichia coli MG1655 strain with plasmid pJBEI-6409 that produces limonene. We show the systems biology steps involved from collecting time-series data of living cells, to dynamic model creation and fitting the model with experimental responses using COPASI software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pereira M, Oliveira AM (2020) Poverty and food insecurity may increase as the threat of COVID-19 spreads. Public Health Nutr 23(17):3236–3240. https://doi.org/10.1017/S1368980020003493

    Article  PubMed  PubMed Central  Google Scholar 

  2. FAO, IFAD, UNICEF et al (2021) The State of Food Security and Nutrition in the World 2021. Transforming food systems for food security, improved nutrition and affordable healthy diets for all. In: The State of Food Security and Nutrition in the World (SOFI). FAO, Rome. https://doi.org/10.4060/cb4474en

    Chapter  Google Scholar 

  3. Smith DJ, Helmy M, Lindley ND et al (2022) The transformation of our food system using cellular agriculture: what lies ahead and who will lead it? Trends Food Sci Technol 127:368–376. https://doi.org/10.1016/j.tifs.2022.04.015

    Article  CAS  Google Scholar 

  4. Ciriminna R, Lomeli-Rodriguez M, Demma Cara P et al (2014) Limonene: a versatile chemical of the bioeconomy. Chem Commun (Camb) 50(97):15288–15296. https://doi.org/10.1039/c4cc06147k

    Article  CAS  PubMed  Google Scholar 

  5. Sun C, Theodoropoulos C, Scrutton NS (2020) Techno-economic assessment of microbial limonene production. Bioresour Technol 300:122666. https://doi.org/10.1016/j.biortech.2019.122666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alonso-Gutierrez J, Chan R, Batth TS et al (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41. https://doi.org/10.1016/j.ymben.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  7. Carter OA, Peters RJ, Croteau R (2003) Monoterpene biosynthesis pathway construction in Escherichia coli. Phytochemistry 64(2):425–433. https://doi.org/10.1016/s0031-9422(03)00204-8

    Article  CAS  PubMed  Google Scholar 

  8. Reiling KK, Yoshikuni Y, Martin VJ et al (2004) Mono and diterpene production in Escherichia coli. Biotechnol Bioeng 87(2):200–212. https://doi.org/10.1002/bit.20128

    Article  CAS  PubMed  Google Scholar 

  9. Willrodt C, David C, Cornelissen S et al (2014) Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media. Biotechnol J 9(8):1000–1012. https://doi.org/10.1002/biot.201400023

    Article  CAS  PubMed  Google Scholar 

  10. Yang J, Nie Q, Ren M et al (2013) Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol Biofuels 6(1):60. https://doi.org/10.1186/1754-6834-6-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martin VJ, Pitera DJ, Withers ST et al (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802. https://doi.org/10.1038/nbt833

    Article  CAS  PubMed  Google Scholar 

  12. Shin J, South EJ, Dunlop MJ (2022) Transcriptional tuning of mevalonate pathway enzymes to identify the impact on limonene production in Escherichia coli. ACS Omega 7(22):18331–18338. https://doi.org/10.1021/acsomega.2c00483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu J, Cheng S, Cao J et al (2019) Systematic optimization of limonene production in engineered Escherichia coli. J Agric Food Chem 67(25):7087–7097. https://doi.org/10.1021/acs.jafc.9b01427

    Article  CAS  PubMed  Google Scholar 

  14. Helmy M, Smith D, Selvarajoo K (2020) Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering. Metab Eng Commun 11:e00149. https://doi.org/10.1016/j.mec.2020.e00149

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim OD, Rocha M, Maia P (2018) A review of dynamic modeling approaches and their application in computational strain optimization for metabolic engineering. Front Microbiol 9:1690. https://doi.org/10.3389/fmicb.2018.01690

    Article  PubMed  PubMed Central  Google Scholar 

  16. Selvarajoo K (2018) Complexity of biochemical and genetic responses reduced using simple theoretical models. Methods Mol Biol 1702:171–201. https://doi.org/10.1007/978-1-4939-7456-6_9

    Article  PubMed  Google Scholar 

  17. Selvarajoo K, Takada Y, Gohda J et al (2008) Signaling flux redistribution at toll-like receptor pathway junctions. PLoS One 3(10):e3430. https://doi.org/10.1371/journal.pone.0003430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thornburg ZR, Melo MCR, Bianchi D et al (2019) Kinetic modeling of the genetic information processes in a minimal cell. Front Mol Biosci 6:130. https://doi.org/10.3389/fmolb.2019.00130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hargrove JL, Hulsey MG, Beale EG (1991) The kinetics of mammalian gene expression. Bioessays 13(12):667–674. https://doi.org/10.1002/bies.950131209

    Article  CAS  PubMed  Google Scholar 

  20. Ryu DD, Park SH (1987) Genetically structured kinetic model for gene product and application of gene switching system to fermentation process control. Ann N Y Acad Sci 506:396–405. https://doi.org/10.1111/j.1749-6632.1987.tb23836.x

    Article  CAS  PubMed  Google Scholar 

  21. Selvarajoo K (2017) A systems biology approach to overcome TRAIL resistance in cancer treatment. Prog Biophys Mol Biol 128:142–154. https://doi.org/10.1016/j.pbiomolbio.2017.02.009

    Article  CAS  PubMed  Google Scholar 

  22. Hayashi K, Piras V, Tabata S et al (2013) A systems biology approach to suppress TNF-induced proinflammatory gene expressions. Cell Commun Signal 11:84. https://doi.org/10.1186/1478-811X-11-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoops S, Sahle S, Gauges R et al (2006) COPASI – a COmplex PAthway SImulator. Bioinformatics 22(24):3067–3074. https://doi.org/10.1093/bioinformatics/btl485

    Article  CAS  PubMed  Google Scholar 

  24. Mauch K, Vaseghi S, Reuss M (2000) Quantitative analysis of metabolic and signaling pathways in Saccharomyces cerevisiae. In: Schiigerl K, Bellgardt K-H (eds) Bioreaction engineering. Springer, Berlin/Heidelberg, pp 435–477. https://doi.org/10.1007/978-3-642-59735-0_15

    Chapter  Google Scholar 

  25. Mendes P, Hoops S, Sahle S et al (2009) Computational modeling of biochemical networks using COPASI. Methods Mol Biol 500:17–59. https://doi.org/10.1007/978-1-59745-525-1_2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Intra-create Thematic Grant “Cities” (grant number: NRF2019-THE001-0007) under the EcoCTs project. The EcoCTs research project is supported by the National Research Foundation, Prime Minister’s Office, Singapore, under its campus for Research Excellence and Technological Enterprise (CREATE) programme. In addition, we are thankful to Dr. Floriant Bellvert from MetaToul (Metabolomics & Fluxomics Facilities, Toulouse, France) and its staff members for their experimental guidance and insights. We would also like to acknowledge Dr. Wee Chew from the Singapore Institute of Food and Biotechnology Innovation (SIFBI) for technical support and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Selvarajoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Khanijou, J.K., Hee, Y.T., Selvarajoo, K. (2024). Identifying Key In Silico Knockout for Enhancement of Limonene Yield Through Dynamic Metabolic Modelling. In: Bizzarri, M. (eds) Systems Biology. Methods in Molecular Biology, vol 2745. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3577-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3577-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3576-6

  • Online ISBN: 978-1-0716-3577-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics