Skip to main content

Direct Method for Simultaneous Analysis of Cholesterol and Cholesterol Oxides by HPLC in Meat and Meat Products

  • Chapter
  • First Online:
Functional Meat Products

Abstract

Cholesterol and cholesterol oxides have numerous implications for human health, highlighting the importance of determining these compounds in highly demanded and consumed foods such as meat and meat products. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) are the most used techniques for detecting and quantifying cholesterol and its oxides. However, the former requires a time-consuming derivatization step and uses high temperatures. Thus, HPLC is an alternative method to GC. In the present chapter, we describe the procedures to carry out the direct saponification of samples, which is the preferred method for hydrolyzing samples and separating these compounds from other interfering lipids, as it is cost- and time-effective. HPLC analysis using photodiode array (PDA) and refractive index (RI) detectors is presented for identification and quantification. Moreover, it can be more precise and accurate with the support of mass spectrometry (MS) to confirm the structures of the compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vicente SJ, Sampaio GR, Ferrari CK et al (2012) Oxidation of cholesterol in foods and its importance for human health. Food Rev Int 28:47–70. https://doi.org/10.1080/87559129.2011.594972

    Article  CAS  Google Scholar 

  2. Garcia-Llatas G, Mercatante D, López-García G et al (2021) Oxysterols—how much do we know about food occurrence, dietary intake and absorption? Curr Opin Food Sci 41:231–239. https://doi.org/10.1016/j.cofs.2021.08.001

    Article  CAS  Google Scholar 

  3. Liu Y, Yang X, Xiao F et al (2022) Dietary cholesterol oxidation products: perspectives linking food processing and storage with health implications. Compr Rev Food Sci Food Saf 21:738–779. https://doi.org/10.1111/1541-4337.12880

    Article  CAS  PubMed  Google Scholar 

  4. Choi HR, Chang Y, Kim Y et al (2022) High low-density lipoprotein cholesterol level is associated with an increased risk of incident early-onset vasomotor symptoms. Sci Rep 12:14652. https://doi.org/10.1038/s41598-022-19028-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kosmas CE, Rodriguez PS, Bousvarou MD et al (2023) The triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) ratio as a risk marker for metabolic syndrome and cardiovascular disease. Diagnstics 13:929. https://doi.org/10.3390/diagnostics13050929

    Article  CAS  Google Scholar 

  6. Barriuso B, Ansorena D, Astiasarán I (2017) Oxysterols formation: a review of a multifactorial process. J Steroid Biochem Mol Biol 169:39–45. https://doi.org/10.1016/j.jsbmb.2016.02.027

    Article  CAS  PubMed  Google Scholar 

  7. Hashari SZ, Rahim AA, Meng GY et al (2020) Quantification of cooking method effect on COP content in meat types using triple quadrupole GC-MS/MS. Molecules 25:4978. https://doi.org/10.3390/molecules25214978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rather SA, Masoodi FA, Rather JA et al (2021) Effects of xanthan gum, canning and storage period on fatty acid profile and cholesterol oxidation of restructured low-fat meat product of India. Food Chem 359:128450. https://doi.org/10.1016/j.foodchem.2020.128450

    Article  CAS  PubMed  Google Scholar 

  9. Ortuño J, Mateo L, Rodríguez-Estrada MT et al (2021) Effects of sous vide vs grilling methods on lamb meat colour and lipid stability during cooking and heated display. Meat Sci 171:108287. https://doi.org/10.1016/j.meatsci.2020.108287

    Article  CAS  PubMed  Google Scholar 

  10. López-Fernández O, Domínguez R, Santos EM et al (2022) Comparison between HPLC-PAD and GC-MS methods for the quantification of cholesterol in meat. Food Anal Methods 15:1118–1131. https://doi.org/10.1007/s12161-021-02226-7

    Article  Google Scholar 

  11. Dinh TT, Thompson LD, Galyean ML et al (2011) Cholesterol content and methods for cholesterol determination in meat and poultry. Compr Rev Food Sci Food Saf 10:269–289. https://doi.org/10.1111/j.1541-4337.2011.00158

    Article  CAS  Google Scholar 

  12. Belhaj K, Mansour F, Benmoumen A et al (2020) Fatty acids, health lipid indices, and cholesterol content of sheep meat of three breeds from Moroccan pastures. Arch Anim Breed 63:471–482. https://doi.org/10.5194/aab-63-471-2020

    Article  PubMed  PubMed Central  Google Scholar 

  13. Biesek J, Kuźniacka J, Banaszak M et al (2020) The effect of various protein sources in goose diets on meat quality, fatty acid composition, and cholesterol and collagen content in breast muscles. Poult Sci 99:6278–6286. https://doi.org/10.1016/j.psj.2020.08.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tichivangana JZ, Morrissey PA (1985) Metmyoglobin and inorganic metals as pro-oxidants in raw and cooked muscle systems. Meat Sci 15:107–116. https://doi.org/10.1016/0309-1740(85)90051-8

    Article  CAS  PubMed  Google Scholar 

  15. Chaijan M (2008) Lipid and myoglobin oxidations in muscle foods. Songklanakarin J Sci Technol 30:47–53

    Google Scholar 

  16. Domínguez R, Pateiro M, Gagaoua M et al (2019) A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 8:429. https://doi.org/10.3390/antiox8100429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alamin SA, Ahmed DA, Ahmed HE (2014) A comparative study on the chemical composition and cholesterol content of fresh camel, beef and goat meat. Sudan J Sci Technol 15:73–80

    Google Scholar 

  18. Saldanha T, Mazalli MR, Bragagnolo N (2004) Comparative evolution of two methods for the determination of cholesterol in meat and milk. Food Sci Technol 24:109–113. https://doi.org/10.1590/S0101-20612004000100020

    Article  CAS  Google Scholar 

  19. Khan MI, Min JS, Lee SO et al (2015) Cooking, storage, and reheating effect on the formation of cholesterol oxidation products in processed meat products. Lipids Health Dis 14:1–9. https://doi.org/10.1186/s12944-015-0091-5

    Article  CAS  Google Scholar 

  20. Ma Z, Wu W, Zhang D et al (2022) Daily intake of up to two eggs for 11 weeks does not affect the cholesterol balance of Chinese young adults. Food Sci Nutr 10:1081–1092. https://doi.org/10.1002/fsn3.2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zinöcker MK, Svendsen K, Dankel SN (2021) The homeoviscous adaptation to dietary lipids (HADL) model explains controversies over saturated fat, cholesterol, and cardiovascular disease risk. Am J Clin Nutr 113:277–289. https://doi.org/10.1093/ajcn/nqaa322

    Article  PubMed  Google Scholar 

  22. Hussain G, Wang J, Rasul A et al (2019) Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis 18:1–12. https://doi.org/10.1186/s12944-019-0965-z

    Article  Google Scholar 

  23. Keser H, Girit OB, Abidin SA (2023) Sensory-motor performance and neurochemical effects in the cerebral cortex of brain-derived neurotrophic factor heterozygous mice fed a high-cholesterol diet. Acta Neurobiol Exp 83. https://doi.org/10.55782/ane-2023-XXX

  24. Staurenghi E, Cerrato V, Gamba P et al (2021) Oxysterols present in Alzheimer’s disease brain induce synaptotoxicity by activating astrocytes: a major role for lipocalin-2. Redox Biol 39:101837. https://doi.org/10.1016/j.redox.2020.101837

    Article  CAS  PubMed  Google Scholar 

  25. You JS, Lim H, Seo JY et al (2022) 25-hydroxycholesterol-induced oxiapoptophagy in L929 mouse fibroblast cell line. Molecules 27:199. https://doi.org/10.3390/molecules27010199

    Article  CAS  Google Scholar 

  26. Li LH, Dutkiewicz EP, Huang YC et al (2019) Analytical methods for cholesterol quantification. J Food Drug Anal 27:375–386. https://doi.org/10.1016/j.jfda.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  27. Hajeb P, Zhu L, Bossi R et al (2022) Sample preparation techniques for suspect and non-target screening of emerging contaminants. Chemosphere 287:132306. https://doi.org/10.1016/j.chemosphere.2021.132306

    Article  CAS  PubMed  Google Scholar 

  28. Dionisi F, Golay PA, Aeschlimann JM et al (1998) Determination of cholesterol oxidation products in milk powders: methods comparison and validation. J Agric Food Chem 46:2227–2233. https://doi.org/10.1021/jf9710600

    Article  CAS  Google Scholar 

  29. Saldanha T, Sawaya ACHF, Eberlin MN et al (2006) HPLC separation and determination of 12 cholesterol oxidation products in fish: comparative study of RI, UV, and APCI-MS detectors. J Agric Food Chem 54:4107–4113. https://doi.org/10.1021/jf0532009

    Article  CAS  PubMed  Google Scholar 

  30. Busch TP, King AJ (2009) Artifact generation and monitoring in analysis of cholesterol oxide products. Anal Biochem 388:1–14. https://doi.org/10.1016/j.ab.2008.12.034

    Article  CAS  PubMed  Google Scholar 

  31. Tai CY, Chen YC, Chen BH (1999) Analysis, formation and inhibition of cholesterol oxidation products in foods: an overview (part I). J Food Drug Anal 7:243–257

    CAS  Google Scholar 

  32. Georgiou CA, Constantinou MS, Kapnissi-Christodoulou CP (2014) Sample preparation: a critical step in the analysis of cholesterol oxidation products. Food Chem 145:918–926. https://doi.org/10.1016/j.foodchem.2013.08.123

    Article  CAS  PubMed  Google Scholar 

  33. Ulberth F, Buchgraber M (2002) Extraction and purification of cholesterol oxidation products. In: Guardiola F, Dutta P, Codony R, Savage GP (eds) Cholesterol and Phytosterol oxidation products: analysis, occurrence and biological effects. AOCS Press, Champaign

    Google Scholar 

  34. Lozada-Castro JJ, Gil-Díaz M, Santos-Delgado MJ et al (2011) Effect of electron-beam irradiation on cholesterol oxide formation in different ready-to-eat foods. Innov Food Sci Emerg Technol 12:519–525. https://doi.org/10.1016/j.ifset.2011.07.005

    Article  CAS  Google Scholar 

  35. Park PW, Guardiola F, Park SH et al (1996) Kinetic evaluation of 3-β-hydroxycholest-5-en-7-one (7-ketocholesterol) stability during saponification. J Am Oil Chem Soc 73:623–629. https://doi.org/10.1007/BF02518118

    Article  CAS  Google Scholar 

  36. Constantinou MS, Georgiou CA, Kapnissi-Christodoulou CP (2015) Development of a reliable analytical protocol for the isolation of cholesterol oxidation products—a comparison of different lipid extraction and saponification methods. Food Anal Methods 8:1499–1507. https://doi.org/10.1007/s12161-014-0034-1

    Article  Google Scholar 

  37. Souza HAL, Mariutti LRB, Bragagnolo N (2017) Microwave assisted direct saponification for the simultaneous determination of cholesterol and cholesterol oxides in shrimp. J Steroid Biochem Mol Biol 169:88–95. https://doi.org/10.1016/j.jsbmb.2016.03.027

    Article  CAS  PubMed  Google Scholar 

  38. Stajic S, Zivcovik D, Perunovic M et al (2011) Cholesterol content and atherogenicity of fermented sausages made of pork meat from various breeds. Procedia Food Sci 1:568–575. https://doi.org/10.1016/j.profoo.2011.09.086

    Article  CAS  Google Scholar 

  39. Ferreira EL, Rodrigues GS, Torres EFS et al (2011) Natural antioxidant from Yerba Maté (Ilex paraguariensis St. Hil.) prevents hamburger peroxidation. Braz Arch Biol Technol 54:803–809. https://doi.org/10.1590/S1516-89132011000400021

    Article  CAS  Google Scholar 

  40. Georgiou AC, Kapnissi-Christodoulou CP (2012) Qualitative and quantitative determination of COPs in cypriot meat samples using HPLC determination of the most effective sample preparation procedure. J Chromatogr Sci 51:286–291. https://doi.org/10.1093/chromsci/bms139

    Article  CAS  PubMed  Google Scholar 

  41. Stroher GL, Rodrigues AC, Dias LF et al (2012) Comparative analysis and validation methodologies of GC and HPLC for analysis of cholesterol in meat products. Am J Analyt Chem 3:306–311. https://doi.org/10.4236/ajac.2012.34042

    Article  CAS  Google Scholar 

  42. Amaral JS, Soares S, Mafra I et al (2014) Assessing the variability of the fatty acid profile and cholesterol content of meat sausages. Riv Ital Delle Sostanze Grasse 91:261–172

    CAS  Google Scholar 

  43. Figueirêdo BC, Trad IJ, Mariutti LRB et al (2014) Effect of annatto powder and sodium erythorbate on lipid oxidation inpork loin during frozen storage. Food Res Int 65:137–143. https://doi.org/10.1016/j.foodres.2014.07.016

    Article  CAS  Google Scholar 

  44. Georgiou AC, Constantinou CP, Andreou R et al (2016) Novel approach to fast determination of cholesterol oxidation products in Cypriot foodstuffs using ultra-performance liquid chromatography-tandem mass spectrometry. Electrophoresis 37:1101–1108. https://doi.org/10.1002/elps.201500196

    Article  CAS  PubMed  Google Scholar 

  45. Ducic M, Polak T, Polak ML et al (2017) Effects of sodium nitrite and heat treatment on cholesterol oxidation products and sensorial characteristics of dry fermented sausages. Meat Technol 58:110–117

    CAS  Google Scholar 

  46. Domínguez R, Barba FJ, Centeno JA et al (2018) Simple and rapid method for the simultaneous determination of cholesterol and retinol in meat using normal-phase HPLC technique. Food Anal Methods 11:319–326. https://doi.org/10.1007/s12161-017-1001-4

    Article  Google Scholar 

  47. Rather SA, Masoodi FA, Rather JA et al (2021) Impact of thermal processing and storage on fatty acid composition and cholesterol oxidation of canned traditional low-fat meat product of India. LWT - Food Sci Technol 139:110503. https://doi.org/10.1016/j.lwt.2020.110503

    Article  CAS  Google Scholar 

  48. Akhter R, Masoodi FA, Wani TA et al (2022) Impact of microencapsulated natural antioxidants on the lipid profile and cholesterol oxidation of γ-irradiated meat emulsions. LWT - Food Sci Technol 159:113155. https://doi.org/10.1016/j.lwt.2022.113155

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Oliveira, V.S., Sampaio, G.R., da Silva Torres, E.A.F., Saldanha, T. (2024). Direct Method for Simultaneous Analysis of Cholesterol and Cholesterol Oxides by HPLC in Meat and Meat Products. In: Verruck, S., Teixeira Marsico, E. (eds) Functional Meat Products. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3573-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3573-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3572-8

  • Online ISBN: 978-1-0716-3573-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics