Skip to main content

CRISPR Interference-Based Functional Small RNA Genomics

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2741))

  • 464 Accesses

Abstract

Small RNAs (sRNAs) are versatile regulators universally present in species across the prokaryotic kingdom, yet their functional characterization remains a major bottleneck. Gene inactivation through random transposon insertion has proven extremely valuable in discovering hidden gene functions. However, this approach is biased toward long genes and usually results in the underrepresentation of sRNA mutants. In contrast, CRISPR interference (CRISPRi) harnesses guide RNAs to recruit cleavage-deficient Cas nucleases to specific DNA loci. The ensuing steric hindrance inhibits RNA polymerase assembly at—or migration along—predefined genes, allowing for targeted knockdown screens without major length bias. In this chapter, we provide a detailed protocol for CRISPRi-based functional screening of bacterial sRNAs. Using the abundant microbiota species Bacteroides thetaiotaomicron as a model, we describe the design and generation of a guide library targeting the full intergenic sRNA repertoire of this organism and its application to identify sRNA knockdown-associated fitness effects. Our protocol is generic and thus suitable for the systematic assessment of sRNA-associated phenotypes in a wide range of bacterial species and experimental conditions. We expect CRISPRi-based functional genomics to boost sRNA research in understudied bacterial taxa, for instance, members of the gut microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wagner EGH, Romby P (2015) Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv Genet 90:133–208

    Article  CAS  PubMed  Google Scholar 

  2. Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43(6):880–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Papenfort K, Melamed S (2023) Small RNAs, large networks: posttranscriptional regulons in gram-negative bacteria. Annu Rev Microbiol 77:23

    Article  CAS  PubMed  Google Scholar 

  4. Ryan D, Prezza G, Westermann AJ (2020) An RNA-centric view on gut Bacteroidetes. Biol Chem 402(1):55–72

    Article  PubMed  Google Scholar 

  5. Ryan D et al (2020) A high-resolution transcriptome map identifies small RNA regulation of metabolism in the gut microbe Bacteroides thetaiotaomicron. Nat Commun 11(1):3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ryan D et al (2023) An integrated transcriptomics-functional genomics approach reveals a small RNA that modulates Bacteroides thetaiotaomicron sensitivity to tetracyclines. bioRxiv

    Google Scholar 

  7. Liu H et al (2021) Functional genetics of human gut commensal Bacteroides thetaiotaomicron reveals metabolic requirements for growth across environments. Cell Rep 34(9):108789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Price MN et al (2018) Mutant phenotypes for thousands of bacterial genes of unknown function. Nature 557(7706):503–509

    Article  CAS  PubMed  Google Scholar 

  9. Chao MC et al (2016) The design and analysis of transposon insertion sequencing experiments. Nat Rev Microbiol 14(2):119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cain AK et al (2020) A decade of advances in transposon-insertion sequencing. Nat Rev Genet 21(9):526–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goodman AL et al (2009) Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6(3):279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abel S et al (2015) Analysis of bottlenecks in experimental models of infection. PLoS Pathog 11(6):e1004823

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dominguez AA, Lim WA, Qi LS (2016) Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17(1):5–15

    Article  CAS  PubMed  Google Scholar 

  14. Qi LS et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McCarty NS et al (2020) Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat Commun 11(1):1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu X et al (2017) High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae. Mol Syst Biol 13(5):931

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rousset F et al (2018) Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors. PLoS Genet 14(11):e1007749

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee HH et al (2019) Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi. Nat Microbiol 4(7):1105–1113

    Article  CAS  PubMed  Google Scholar 

  19. Shin J et al (2023) Genome-wide CRISPRi screen identifies enhanced autolithotrophic phenotypes in acetogenic bacterium Eubacterium limosum. Proc Natl Acad Sci U S A 120(6):e2216244120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peters JM et al (2016) A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165(6):1493–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang T et al (2018) Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance. Nat Commun 9(1):2475

    Article  PubMed  PubMed Central  Google Scholar 

  22. Peters JM et al (2019) Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi. Nat Microbiol 4(2):244–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prezza G et al (2024) A CRISPR-based genetic screen in Bacteroides thetaiotaomicron reveals a small RNA modulator of bile susceptibility. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2311323121 (in press)

  24. Liao C et al (2019) Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis. Nat Commun 10(1):2948

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bushnell B, Rood J, Singer E (2017) BBMerge - accurate paired shotgun read merging via overlap. PLoS One 12(10):e0185056

    Article  PubMed  PubMed Central  Google Scholar 

  26. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  PubMed  Google Scholar 

  27. Venturini E et al (2020) A global data-driven census of Salmonella small proteins and their potential functions in bacterial virulence. Microlife 1(1):uqaa002

    Article  PubMed  PubMed Central  Google Scholar 

  28. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Westermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Prezza, G., Westermann, A.J. (2024). CRISPR Interference-Based Functional Small RNA Genomics. In: Arluison, V., Valverde, C. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 2741. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3565-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3565-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3564-3

  • Online ISBN: 978-1-0716-3565-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics