Skip to main content

Whole-Mount Immunofluorescence Staining to Visualize Cell Cycle Progression in Mouse Oocyte Meiosis

  • Protocol
  • First Online:
Cell Cycle Control

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2740))

  • 420 Accesses

Abstract

Whole-mount immunofluorescence allows direct visualization of the cellular architecture within cells. Here, we apply this technique to mouse oocytes to visualize spindle morphology and microtubule attachments to kinetochores, using a technique we call “cold treatment,” at various phases of the meiotic cell cycle. This method allows the analysis of spindle structures at different meiosis I stages and at metaphase II. An adaptation of the protocol to the cell cycle stage of interest is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maro B, Verlhac MH (2002) Polar body formation: new rules for asymmetric divisions. Nat Cell Biol 4:E281–E283

    Article  CAS  PubMed  Google Scholar 

  2. Chaigne A, Verlhac MH, Terret ME (2012) Spindle positioning in mammalian oocytes. Exp Cell Res 318:1442–1447

    Article  CAS  PubMed  Google Scholar 

  3. Maro B, Howlett SK, Webb M (1985) Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes. J Cell Biol 101:1665–1672

    Article  CAS  PubMed  Google Scholar 

  4. Van Blerkom J (1991) Microtubule mediation of cytoplasmic and nuclear maturation during the early stages of resumed meiosis in cultured mouse oocytes. Proc Natl Acad Sci U S A 88:5031–5035

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schuh M, Ellenberg J (2007) Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130:484–498

    Article  CAS  PubMed  Google Scholar 

  6. Clift D, Schuh M (2015) A three-step MTOC fragmentation mechanism facilitates bipolar spindle assembly in mouse oocytes. Nat Commun 6:7217

    Article  PubMed  Google Scholar 

  7. Courtois A, Yoshida S, Takenouchi O et al (2021) Stable kinetochore-microtubule attachments restrict MTOC position and spindle elongation in oocytes. EMBO Rep 22:e51400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kitajima TS, Ohsugi M, Ellenberg J (2011) Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell 146:568–581

    Article  CAS  PubMed  Google Scholar 

  9. Schuh M, Ellenberg J (2008) A new model for asymmetric spindle positioning in mouse oocytes. Curr Biol 18:1986–1992

    Article  CAS  PubMed  Google Scholar 

  10. Verlhac MH, Lefebvre C, Guillaud P et al (2000) Asymmetric division in mouse oocytes: with or without Mos. Curr Biol 10:1303–1306

    Article  CAS  PubMed  Google Scholar 

  11. Gryaznova Y, Keating L, Touati SA et al (2021) Kinetochore individualization in meiosis I is required for centromeric cohesin removal in meiosis II. EMBO J 40:e106797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schatten G, Simerly C, Schatten H (1985) Microtubule configurations during fertilization, mitosis, and early development in the mouse and the requirement for egg microtubule-mediated motility during mammalian fertilization. Proc Natl Acad Sci U S A 82:4152–4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maro B, Johnson MH, Pickering SJ, Flach G (1984) Changes in actin distribution during fertilization of the mouse egg. J Embryol Exp Morphol 81:211–237

    CAS  PubMed  Google Scholar 

  14. Brinkley BR, Cartwright J (1975) Cold-labile and cold-stable microtubules in the mitotic spindle of mammalian cells. Ann N Y Acad Sci 253:428–439

    Article  CAS  PubMed  Google Scholar 

  15. Touati SA, Buffin E, Cladiere D et al (2015) Mouse oocytes depend on BubR1 for proper chromosome segregation but not for prophase I arrest. Nat Commun 6:6946

    Article  CAS  PubMed  Google Scholar 

  16. Vallot A, Leontiou I, Cladiere D et al (2018) Tension-induced error correction and not kinetochore attachment status activates the SAC in an Aurora-B/C-dependent manner in oocytes. Curr Biol 28:130–139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank D. Cladière for comments on the manuscript. Research in the group is supported by the Agence Nationale de la Recherche (ANR-19-CE13-0015) and la Fondation de la Recherche Médicale (Equipe FRM DEQ 202103012574).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra A. Touati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

El Jailani, S., Wassmann, K., Touati, S.A. (2024). Whole-Mount Immunofluorescence Staining to Visualize Cell Cycle Progression in Mouse Oocyte Meiosis. In: Castro, A., Lacroix, B. (eds) Cell Cycle Control. Methods in Molecular Biology, vol 2740. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3557-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3557-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3556-8

  • Online ISBN: 978-1-0716-3557-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics