Skip to main content

Bacteriophage Virus-Like Particles: Platforms for Vaccine Design

  • Protocol
  • First Online:
Bacteriophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2738))

Abstract

Virus-like particles (VLPs) derived from bacteriophages have many applications in biomedical sciences, especially in the development of candidate vaccines against viral and bacterial infections. Bacteriophage VLPs can be manufactured cheaply and in large quantities in bacteria compared to eukaryotic expression systems. In addition to this, bacteriophage VLPs are excellent platforms for vaccine design for the following reason: Humans do not have preexisting antibodies against bacteriophage VLPs. Thus, antigens displayed on bacteriophage VLP platforms are expected to be highly immunogenic. As such, VLPs derived from MS2, PP7, Qβ, AP205, P22 bacteriophages, etc. have been used to develop candidate vaccines against human infectious and noninfectious agents. This mini-review summarizes data from some of the candidate bacteriophage-based VLP peptide vaccines that have been developed. The review also highlights some strategies used to develop the candidate bacteriophage-based VLP peptide vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dion MB, Oechslin F, Moineau S (2020) Phage diversity, genomics and phylogeny. Nat Rev Microbiol 18(3):125–138. https://doi.org/10.1038/s41579-019-0311-5

    Article  CAS  PubMed  Google Scholar 

  2. Liu H, Kheirvari M, Tumban E (2023) Potential applications of thermophilic bacteriophages in one health. Int J Mol Sci 24(9). https://doi.org/10.3390/ijms24098222

  3. Huang L, Xiang Y (2020) Structures of the tailed bacteriophages that infect Gram-positive bacteria. Curr Opin Virol 45:65–74. https://doi.org/10.1016/j.coviro.2020.09.002

    Article  CAS  PubMed  Google Scholar 

  4. Yap ML, Rossmann MG (2014) Structure and function of bacteriophage T4. Future Microbiol 9(12):1319–1327. https://doi.org/10.2217/fmb.14.91

    Article  CAS  PubMed  Google Scholar 

  5. Pumpens P, Pushko P (2022) Virus-like particles: a comprehensive guide. CRC Pr I Llc, Boca Raton

    Book  Google Scholar 

  6. Golmohammadi R, Valegard K, Fridborg K, Liljas L (1993) The refined structure of bacteriophage MS2 at 2.8 A resolution. J Mol Biol 234(3):620–639. https://doi.org/10.1006/jmbi.1993.1616

    Article  CAS  PubMed  Google Scholar 

  7. Jalasvuori M, Jaatinen ST, Laurinavicius S, Ahola-Iivarinen E, Kalkkinen N, Bamford DH, Bamford JK (2009) The closest relatives of icosahedral viruses of thermophilic bacteria are among viruses and plasmids of the halophilic archaea. J Virol 83(18):9388–9397. https://doi.org/10.1128/JVI.00869-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rissanen I, Grimes JM, Pawlowski A, Mantynen S, Harlos K, Bamford JK, Stuart DI (2013) Bacteriophage P23–77 capsid protein structures reveal the archetype of an ancient branch from a major virus lineage. Structure 21(5):718–726. https://doi.org/10.1016/j.str.2013.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caldeira JC, Peabody DS (2007) Stability and assembly in vitro of bacteriophage PP7 virus-like particles. J Nanobiotechnology 5:10. https://doi.org/10.1186/1477-3155-5-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li W, Jing Z, Wang S, Li Q, Xing Y, Shi H, Li S, Hong Z (2021) P22 virus-like particles as an effective antigen delivery nanoplatform for cancer immunotherapy. Biomaterials 271:120726. https://doi.org/10.1016/j.biomaterials.2021.120726

    Article  CAS  PubMed  Google Scholar 

  11. Peabody DS, Manifold-Wheeler B, Medford A, Jordan SK, do Carmo Caldeira J, Chackerian B (2008) Immunogenic display of diverse peptides on virus-like particles of RNA phage MS2. J Mol Biol 380(1):252–263. https://doi.org/10.1016/j.jmb.2008.04.049. S0022-2836(08)00496-8 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tissot AC, Renhofa R, Schmitz N, Cielens I, Meijerink E, Ose V, Jennings GT, Saudan P, Pumpens P, Bachmann MF (2010) Versatile virus-like particle carrier for epitope based vaccines. PloS One 5(3):e9809. https://doi.org/10.1371/journal.pone.0009809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cielens I, Ose V, Petrovskis I, Strelnikova A, Renhofa R, Kozlovska T, Pumpens P (2000) Mutilation of RNA phage Qbeta virus-like particles: from icosahedrons to rods. FEBS Lett 482(3):261–264. https://doi.org/10.1016/s0014-5793(00)02061-5

    Article  CAS  PubMed  Google Scholar 

  14. Qian C, Liu X, Xu Q, Wang Z, Chen J, Li T, Zheng Q, Yu H, Gu Y, Li S, Xia N (2020) Recent progress on the versatility of virus-like particles. Vaccines (Basel) 8(1). https://doi.org/10.3390/vaccines8010139

  15. Tariq H, Batool S, Asif S, Ali M, Abbasi BH (2021) Virus-like particles: revolutionary platforms for developing vaccines against emerging infectious diseases. Front Microbiol 12:790121. https://doi.org/10.3389/fmicb.2021.790121

    Article  PubMed  Google Scholar 

  16. Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10(11):787–796. https://doi.org/10.1038/nri2868. nri2868 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Chackerian B, Durfee MR, Schiller JT (2008) Virus-like display of a neo-self antigen reverses B cell anergy in a B cell receptor transgenic mouse model. J Immunol 180(9):5816–5825. https://doi.org/10.4049/jimmunol.180.9.5816. 180/9/5816 [pii]

    Article  CAS  PubMed  Google Scholar 

  18. Yuseff MI, Pierobon P, Reversat A, Lennon-Dumenil AM (2013) How B cells capture, process and present antigens: a crucial role for cell polarity. Nat Rev Immunol 13(7):475–486. https://doi.org/10.1038/nri3469

    Article  CAS  PubMed  Google Scholar 

  19. Zabel F, Kundig TM, Bachmann MF (2013) Virus-induced humoral immunity: on how B cell responses are initiated. Curr Opin Virol 3(3):357–362. https://doi.org/10.1016/j.coviro.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  20. Caldeira Jdo C, Medford A, Kines RC, Lino CA, Schiller JT, Chackerian B, Peabody DS (2010) Immunogenic display of diverse peptides, including a broadly cross-type neutralizing human papillomavirus L2 epitope, on virus-like particles of the RNA bacteriophage PP7. Vaccine 28(27):4384–4393. https://doi.org/10.1016/j.vaccine.2010.04.049. S0264-410X(10)00555-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  21. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38(5):1404–1413. https://doi.org/10.1002/eji.200737984

    Article  CAS  PubMed  Google Scholar 

  22. Tumban E, Peabody J, Peabody DS, Chackerian B (2013) A universal virus-like particle-based vaccine for human papillomavirus: longevity of protection and role of endogenous and exogenous adjuvants. Vaccine 31(41):4647–4654. https://doi.org/10.1016/j.vaccine.2013.07.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ibanez LI, Roose K, De Filette M, Schotsaert M, De Sloovere J, Roels S, Pollard C, Schepens B, Grooten J, Fiers W, Saelens X (2013) M2e-displaying virus-like particles with associated RNA promote T helper 1 type adaptive immunity against influenza A. PloS One 8(3):e59081. https://doi.org/10.1371/journal.pone.0059081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tumban E, Peabody J, Tyler M, Peabody DS, Chackerian B (2012) VLPs displaying a single L2 epitope induce broadly cross-neutralizing antibodies against human papillomavirus. PloS One 7(11):e49751. https://doi.org/10.1371/journal.pone.0049751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fontana D, Kratje R, Etcheverrigaray M, Prieto C (2014) Rabies virus-like particles expressed in HEK293 cells. Vaccine 32(24):2799–2804. https://doi.org/10.1016/j.vaccine.2014.02.031

    Article  CAS  PubMed  Google Scholar 

  26. Pumpens P, Renhofa R, Dishlers A, Kozlovska T, Ose V, Pushko P, Tars K, Grens E, Bachmann MF (2016) The true story and advantages of RNA phage capsids as nanotools. Intervirology 59(2):74–110. https://doi.org/10.1159/000449503

    Article  CAS  PubMed  Google Scholar 

  27. Shirbaghaee Z, Bolhassani A (2016) Different applications of virus-like particles in biology and medicine: vaccination and delivery systems. Biopolymers 105(3):113–132. https://doi.org/10.1002/bip.22759

    Article  CAS  PubMed  Google Scholar 

  28. Yan D, Wei YQ, Guo HC, Sun SQ (2015) The application of virus-like particles as vaccines and biological vehicles. Appl Microbiol Biotechnol 99(24):10415–10432. https://doi.org/10.1007/s00253-015-7000-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kheirvari M, Liu H, Tumban E (2023) Virus-like particle vaccines and platforms for vaccine development. Viruses 15(5):1109. https://www.mdpi.com/1999-4915/15/5/1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Crisci E, Barcena J, Montoya M (2012) Virus-like particles: the new frontier of vaccines for animal viral infections. Vet Immunol Immunopathol 148(3–4):211–225. https://doi.org/10.1016/j.vetimm.2012.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mastico RA, Talbot SJ, Stockley PG (1993) Multiple presentation of foreign peptides on the surface of an RNA-free spherical bacteriophage capsid. J Gen Virol 74(Pt 4):541–548. https://doi.org/10.1099/0022-1317-74-4-541

    Article  CAS  PubMed  Google Scholar 

  32. Peabody DS (1997) Subunit fusion confers tolerance to peptide insertions in a virus coat protein. Arch Biochem Biophys 347(1):85–92. https://doi.org/10.1006/abbi.1997.0312. S0003-9861(97)90312-X [pii]

    Article  CAS  PubMed  Google Scholar 

  33. Yadav R, Zhai L, Kunda NK, Muttil P, Tumban E (2021) Mixed bacteriophage MS2-L2 VLPs elicit long-lasting protective antibodies against HPV pseudovirus 51. Viruses 13(6). https://doi.org/10.3390/v13061113

  34. Zhai L, Yadav R, Kunda NK, Anderson D, Bruckner E, Miller EK, Basu R, Muttil P, Tumban E (2019) Oral immunization with bacteriophage MS2-L2 VLPs protects against oral and genital infection with multiple HPV types associated with head & neck cancers and cervical cancer. Antiviral Res 166:56–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Joyner JA, Daly SM, Peabody J, Triplett KD, Pokhrel S, Elmore BO, Adebanjo D, Peabody DS, Chackerian B, Hall PR (2020) Vaccination with VLPs presenting a linear neutralizing domain of S. aureus Hla elicits protective immunity. Toxins (Basel) 12(7). https://doi.org/10.3390/toxins12070450

  36. Collar AL, Linville AC, Core SB, Frietze KM (2022) Epitope-based vaccines against the Chlamydia trachomatis major outer membrane protein variable domain 4 elicit protection in mice. Vaccines (Basel) 10(6). https://doi.org/10.3390/vaccines10060875

  37. Fu Y, Li J (2016) A novel delivery platform based on Bacteriophage MS2 virus-like particles. Virus Res 211:9–16. https://doi.org/10.1016/j.virusres.2015.08.022

    Article  CAS  PubMed  Google Scholar 

  38. Guo-Qiang W, Yin-Yin Y, Hua-Hui Z, Xu-Dong W, Yu-Bin W, Li-Zhi S, Yu-Lin L, Yi-Qing Z, Xi-Xi Z, Zhen-Qiang Z (2020) Preparation of quality control materials for RT-PCR detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on MS2 phage virus-like particles. China Biotechnology 40(12):31–40

    Google Scholar 

  39. Tars K, Fridborg K, Bundule M, Liljas L (2000) The three-dimensional structure of bacteriophage PP7 from Pseudomonas aeruginosa at 3.7-A resolution. Virology 272(2):331–337. https://doi.org/10.1006/viro.2000.0373

    Article  CAS  PubMed  Google Scholar 

  40. Tumban E, Peabody J, Peabody DS, Chackerian B (2011) A pan-HPV vaccine based on bacteriophage PP7 VLPs displaying broadly cross-neutralizing epitopes from the HPV minor capsid protein, L2. PloS One 6(8):e23310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Basu R, Zhai L, Contreras A, Tumban E (2018) Immunization with phage virus-like particles displaying Zika virus potential B-cell epitopes neutralizes Zika virus infection of monkey kidney cells. Vaccine 36(10):1256–1264. https://doi.org/10.1016/j.vaccine.2018.01.056

    Article  CAS  PubMed  Google Scholar 

  42. Herbert FC, Brohlin OR, Galbraith T, Benjamin C, Reyes CA, Luzuriaga MA, Shahrivarkevishahi A, Gassensmith JJ (2020) Supramolecular encapsulation of small-ultrared fluorescent proteins in virus-like nanoparticles for noninvasive in vivo imaging agents. Bioconjug Chem 31(5):1529–1536. https://doi.org/10.1021/acs.bioconjchem.0c00190

    Article  CAS  PubMed  Google Scholar 

  43. Kozlovska TM, Cielens I, Dreilinna D, Dislers A, Baumanis V, Ose V, Pumpens P (1993) Recombinant RNA phage Q beta capsid particles synthesized and self-assembled in Escherichia coli. Gene 137(1):133–137. https://doi.org/10.1016/0378-1119(93)90261-z

    Article  CAS  PubMed  Google Scholar 

  44. Basu R, Zhai L, Rosso B, Tumban E (2020) Bacteriophage Qbeta virus-like particles displaying Chikungunya virus B-cell epitopes elicit high-titer E2 protein antibodies but fail to neutralize a Thailand strain of Chikungunya virus. Vaccine 38(11):2542–2550. https://doi.org/10.1016/j.vaccine.2020.01.091

    Article  CAS  PubMed  Google Scholar 

  45. Kam YW, Lum FM, Teo TH, Lee WW, Simarmata D, Harjanto S, Chua CL, Chan YF, Wee JK, Chow A, Lin RT, Leo YS, Le Grand R, Sam IC, Tong JC, Roques P, Wiesmuller KH, Renia L, Rotzschke O, Ng LF (2012) Early neutralizing IgG response to Chikungunya virus in infected patients targets a dominant linear epitope on the E2 glycoprotein. EMBO Mol Med 4(4):330–343. https://doi.org/10.1002/emmm.201200213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Spohn G, Schori C, Keller I, Sladko K, Sina C, Guler R, Schwarz K, Johansen P, Jennings GT, Bachmann MF (2014) Preclinical efficacy and safety of an anti-IL-1beta vaccine for the treatment of type 2 diabetes. Mol Ther Methods Clin Dev 1:14048. https://doi.org/10.1038/mtm.2014.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Crossey E, Amar MJA, Sampson M, Peabody J, Schiller JT, Chackerian B, Remaley AT (2015) A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine 33(43):5747–5755. https://doi.org/10.1016/j.vaccine.2015.09.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maphis NM, Peabody J, Crossey E, Jiang S, Jamaleddin Ahmad FA, Alvarez M, Mansoor SK, Yaney A, Yang Y, Sillerud LO, Wilson CM, Selwyn R, Brigman JL, Cannon JL, Peabody DS, Chackerian B, Bhaskar K (2019) Qß Virus-like particle-based vaccine induces robust immunity and protects against tauopathy. NPJ Vaccines 4:26. https://doi.org/10.1038/s41541-019-0118-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lemke-Miltner CD, Blackwell SE, Yin C, Krug AE, Morris AJ, Krieg AM, Weiner GJ (2020) Antibody opsonization of a TLR9 agonist-containing virus-like particle enhances in situ immunization. J Immunol 204(5):1386–1394. https://doi.org/10.4049/jimmunol.1900742

    Article  CAS  PubMed  Google Scholar 

  50. Chan SK, Du P, Ignacio C, Mehta S, Newton IG, Steinmetz NF (2021) Biomimetic virus-like particles as severe acute respiratory syndrome coronavirus 2 diagnostic tools. ACS Nano 15(1):1259–1272. https://doi.org/10.1021/acsnano.0c08430

    Article  CAS  PubMed  Google Scholar 

  51. Klovins J, Overbeek GP, van den Worm SHE, Ackermann HW, van Duin J (2002) Nucleotide sequence of a ssRNA phage from Acinetobacter: kinship to coliphages. J Gen Virol 83(Pt 6):1523–1533. https://doi.org/10.1099/0022-1317-83-6-1523

    Article  CAS  PubMed  Google Scholar 

  52. Volkmann A, Koopman G, Mooij P, Verschoor EJ, Verstrepen BE, Bogers W, Idorn M, Paludan SR, Vang S, Nielsen MA, Sander AF, Schmittwolf C, Hochrein H, Chaplin P (2022) A capsid virus-like particle-based SARS-CoV-2 vaccine induces high levels of antibodies and protects rhesus macaques. Front Immunol 13:857440. https://doi.org/10.3389/fimmu.2022.857440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu X, Chang X, Rothen D, Derveni M, Krenger P, Roongta S, Wright E, Vogel M, Tars K, Mohsen MO, Bachmann MF (2021) AP205 VLPs based on dimerized capsid proteins accommodate RBM domain of SARS-CoV-2 and serve as an attractive vaccine candidate. Vaccines (Basel) 9(4). https://doi.org/10.3390/vaccines9040403

  54. Janitzek CM, Peabody J, Thrane S, Carlsen PHR, Theander TG, Salanti A, Chackerian B, Nielsen MA, Sander AF (2019) A proof-of-concept study for the design of a VLP-based combinatorial HPV and placental malaria vaccine. Sci Rep 9(1):5260. https://doi.org/10.1038/s41598-019-41522-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cielens I, Jackevica L, Strods A, Kazaks A, Ose V, Bogans J, Pumpens P, Renhofa R (2014) Mosaic RNA phage VLPs carrying domain III of the West Nile virus E protein. Mol Biotechnol 56(5):459–469. https://doi.org/10.1007/s12033-014-9743-3

    Article  CAS  PubMed  Google Scholar 

  56. Spohn G, Jennings GT, Martina BE, Keller I, Beck M, Pumpens P, Osterhaus AD, Bachmann MF (2010) A VLP-based vaccine targeting domain III of the West Nile virus E protein protects from lethal infection in mice. Virol J 7:146. https://doi.org/10.1186/1743-422X-7-146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Patterson DP (2018) Encapsulation of active enzymes within bacteriophage P22 virus-like particles. Methods Mol Biol 1798:11–24. https://doi.org/10.1007/978-1-4939-7893-9_2

    Article  CAS  PubMed  Google Scholar 

  58. Diaz-Barriga C, Villanueva-Flores F, Quester K, Zarate-Romero A, Cadena-Nava RD, Huerta-Saquero A (2021) Asparaginase-phage P22 nanoreactors: toward a biobetter development for acute lymphoblastic leukemia treatment. Pharmaceutics 13(5). https://doi.org/10.3390/pharmaceutics13050604

  59. Schwarz B, Morabito KM, Ruckwardt TJ, Patterson DP, Avera J, Miettinen HM, Graham BS, Douglas T (2016) Viruslike particles encapsidating respiratory syncytial virus M and M2 proteins induce robust T cell responses. ACS Biomater Sci Eng 2(12):2324–2332. https://doi.org/10.1021/acsbiomaterials.6b00532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rao VB, Fokine A, Fang Q, Shao Q (2023) Bacteriophage T4 head: structure, assembly, and genome packaging. Viruses 15(2). https://doi.org/10.3390/v15020527

  61. Tao P, Li Q, Shivachandra SB, Rao VB (2017) Bacteriophage T4 as a nanoparticle platform to display and deliver pathogen antigens: construction of an effective anthrax vaccine. Methods Mol Biol 1581:255–267. https://doi.org/10.1007/978-1-4939-6869-5_15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tao P, Zhu J, Mahalingam M, Batra H, Rao VB (2019) Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases. Adv Drug Deliv Rev 145:57–72. https://doi.org/10.1016/j.addr.2018.06.025

    Article  CAS  PubMed  Google Scholar 

  63. Tyler M, Tumban E, Dziduszko A, Ozbun MA, Peabody DS, Chackerian B (2014) Immunization with a consensus epitope from human papillomavirus L2 induces antibodies that are broadly neutralizing. Vaccine 32(34):4267–4274. https://doi.org/10.1016/j.vaccine.2014.06.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jennings GT, Bachmann MF (2008) The coming of age of virus-like particle vaccines. Biol Chem 389(5):521–536. https://doi.org/10.1515/bc.2008.064

    Article  CAS  PubMed  Google Scholar 

  65. Maurer P, Jennings GT, Willers J, Rohner F, Lindman Y, Roubicek K, Renner WA, Muller P, Bachmann MF (2005) A therapeutic vaccine for nicotine dependence: preclinical efficacy, and Phase I safety and immunogenicity. Eur J Immunol 35(7):2031–2040. https://doi.org/10.1002/eji.200526285

    Article  CAS  PubMed  Google Scholar 

  66. Chackerian B, Rangel M, Hunter Z, Peabody DS (2006) Virus and virus-like particle-based immunogens for Alzheimer’s disease induce antibody responses against amyloid-beta without concomitant T cell responses. Vaccine 24(37–39):6321–6331. https://doi.org/10.1016/j.vaccine.2006.05.059

    Article  CAS  PubMed  Google Scholar 

  67. Hatlem D, Trunk T, Linke D, Leo JC (2019) Catching a SPY: using the SpyCatcher-SpyTag and related systems for labeling and localizing bacterial proteins. Int J Mol Sci 20(9). https://doi.org/10.3390/ijms20092129

  68. Smit MJ, Sander AF, Ariaans M, Fougeroux C, Heinzel C, Fendel R, Esen M, Kremsner PG, Ter Heine R, Wertheim HF, Idorn M, Paludan SR, Underwood AP, Binderup A, Ramirez S, Bukh J, Soegaard M, Erdogan SM, Gustavsson T, Clemmensen S, Theander TG, Salanti A, Hamborg M, de Jongh WA, McCall MBB, Nielsen MA, Mordmuller BG, group C-ts (2023) First-in-human use of a modular capsid virus-like vaccine platform: an open-label, non-randomised, phase 1 clinical trial of the SARS-CoV-2 vaccine ABNCoV2. Lancet Microbe 4(3):e140–e148. https://doi.org/10.1016/S2666-5247(22)00337-8

    Article  PubMed  PubMed Central  Google Scholar 

  69. Prentoe J, Janitzek CM, Velazquez-Moctezuma R, Soerensen A, Jorgensen T, Clemmensen S, Soroka V, Thrane S, Theander T, Nielsen MA, Salanti A, Bukh J, Sander AF (2022) Two-component vaccine consisting of virus-like particles displaying hepatitis C virus envelope protein 2 oligomers. NPJ Vaccines 7(1):148. https://doi.org/10.1038/s41541-022-00570-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Marini A, Zhou Y, Li Y, Taylor IJ, Leneghan DB, Jin J, Zaric M, Mekhaiel D, Long CA, Miura K, Biswas S (2019) A universal plug-and-display vaccine carrier based on HBsAg VLP to maximize effective antibody response. Front Immunol 10:2931. https://doi.org/10.3389/fimmu.2019.02931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wiessner C, Wiederhold K-H, Tissot AC, Frey P, Danner S, Jacobson LH, Jennings GT, Lüönd R, Ortmann R, Reichwald J (2011) The second-generation active Aβ immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J Neurosci 31(25):9323–9331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vandenberghe R, Riviere M-E, Caputo A, Sovago J, Maguire RP, Farlow M, Marotta G, Sanchez-Valle R, Scheltens P, Ryan JM (2017) Active Aβ immunotherapy CAD106 in Alzheimer’s disease: a phase 2b study. Alzheimers Dement (N Y) 3(1):10–22

    Article  PubMed  Google Scholar 

  73. Jegerlehner A, Zabel F, Langer A, Dietmeier K, Jennings GT, Saudan P, Bachmann MF (2013) Bacterially produced recombinant influenza vaccines based on virus-like particles. PloS One 8(11):e78947

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kündig TM, Senti G, Schnetzler G, Wolf C, Vavricka BMP, Fulurija A, Hennecke F, Sladko K, Jennings GT, Bachmann MF (2006) Der p 1 peptide on virus-like particles is safe and highly immunogenic in healthy adults. J Allergy Clin Immunol 117(6):1470–1476

    Article  PubMed  Google Scholar 

  75. Spohn G, Keller I, Beck M, Grest P, Jennings GT, Bachmann MF (2008) Active immunization with IL-1 displayed on virus-like particles protects from autoimmune arthritis. Eur J Immunol 38(3):877–887

    Article  CAS  PubMed  Google Scholar 

  76. Brown GC (2019) The endotoxin hypothesis of neurodegeneration. J Neuroinflammation 16(1):180. https://doi.org/10.1186/s12974-019-1564-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zost SJ, Parkhouse K, Gumina ME, Kim K, Perez SD, Wilson PC, Treanor JJ, Sant AJ, Cobey S, Hensley SE (2017) Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proc Natl Acad Sci U S A 114(47):12578–12583. https://doi.org/10.1073/pnas.1712377114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zaman K, Dudman S, Stene-Johansen K, Qadri F, Yunus M, Sandbu S, Gurley ES, Overbo J, Julin CH, Dembinski JL, Nahar Q, Rahman A, Bhuiyan TR, Rahman M, Haque W, Khan J, Aziz A, Khanam M, Streatfield PK, Clemens JD (2020) HEV study protocol: design of a cluster-randomised, blinded trial to assess the safety, immunogenicity and effectiveness of the hepatitis E vaccine HEV 239 (Hecolin) in women of childbearing age in rural Bangladesh. BMJ Open 10(1):e033702. https://doi.org/10.1136/bmjopen-2019-033702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. NIAID (2020) Safety study of hepatitis E vaccine (HEV239). https://clinicaltrials.gov/ct2/show/NCT03827395

  80. Zhu FC, Zhang J, Zhang XF, Zhou C, Wang ZZ, Huang SJ, Wang H, Yang CL, Jiang HM, Cai JP, Wang YJ, Ai X, Hu YM, Tang Q, Yao X, Yan Q, Xian YL, Wu T, Li YM, Miao J, Ng MH, Shih JW, Xia NS (2010) Efficacy and safety of a recombinant hepatitis E vaccine in healthy adults: a large-scale, randomised, double-blind placebo-controlled, phase 3 trial. Lancet 376(9744):895–902. https://doi.org/10.1016/S0140-6736(10)61030-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by start-up funding from the School of Veterinary Medicine at Texas Tech University and by grant number 7R15AI146982-02 from the US National Institutes of Health (National Institute of Allergy and Infectious Diseases). The content is solely the responsibility of the authors and does not necessarily represent the views of the National Institutes of Health. I would like to thank Hong Liu and Milad Kheirvari for proofreading this chapter; Hong liu also helped with the cover image for the book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebenezer Tumban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tumban, E. (2024). Bacteriophage Virus-Like Particles: Platforms for Vaccine Design. In: Tumban, E. (eds) Bacteriophages. Methods in Molecular Biology, vol 2738. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3549-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3549-0_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3548-3

  • Online ISBN: 978-1-0716-3549-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics