Skip to main content

Application of Deep Sequencing in Phage Display

  • Protocol
  • First Online:
Bacteriophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2738))

Abstract

This chapter describes the workflow to implement deep sequencing into standard phage display experiments on protein libraries. By harvesting the power of high throughput of these techniques, it allows for comprehensive analysis of the naïve library and library evolution in response to selection by ligand binding. The mutagenized target region of the protein variants encoded by the phage pool is analyzed by Illumina paired-end sequencing. Sequence data are processed to extract selection-enriched amino acid motifs. In addition, a complementary long-read sequencing approach is proposed enabling the monitoring of display vector stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317. https://doi.org/10.1126/science.4001944

    Article  CAS  PubMed  Google Scholar 

  2. McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554. https://doi.org/10.1038/348552a0

    Article  CAS  PubMed  Google Scholar 

  3. Hekim C, Leinonen J, Närvänen A et al (2006) Novel peptide inhibitors of human Kallikrein 2. J Biol Chem 281:12555–12560. https://doi.org/10.1074/jbc.M600014200

    Article  CAS  PubMed  Google Scholar 

  4. Huang AM, Lee JI, King SC, Wilson TH (1992) Amino acid substitution in the lactose carrier protein with the use of amber suppressors. J Bacteriol 174:5436–5441. https://doi.org/10.1128/jb.174.16.5436-5441.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cai C, Dai X, Zhu Y et al (2016) A specific RAGE-binding peptide biopanning from phage display random peptide library that ameliorates symptoms in amyloid β peptide-mediated neuronal disorder. Appl Microbiol Biotechnol 100:825–835. https://doi.org/10.1007/s00253-015-7001-7

    Article  CAS  PubMed  Google Scholar 

  6. Roberts BL, Markland W, Ley AC et al (1992) Directed evolution of a protein: selection of potent neutrophil elastase inhibitors displayed on M13 fusion phage. Proc Natl Acad Sci 89:2429–2433. https://doi.org/10.1073/pnas.89.6.2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schier R, McCall A, Adams GP et al (1996) Isolation of Picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J Mol Biol 263:551–567. https://doi.org/10.1006/jmbi.1996.0598

    Article  CAS  PubMed  Google Scholar 

  8. Zani M-L, Moreau T (2010) Phage display as a powerful tool to engineer protease inhibitors. Biochimie 92:1689–1704. https://doi.org/10.1016/j.biochi.2010.05.003

    Article  CAS  PubMed  Google Scholar 

  9. Isalan M, Klug A, Choo Y (2001) A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat Biotechnol 19:656–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Spiliotopoulos A, Owen JP, Maddison BC et al (2015) Sensitive recovery of recombinant antibody clones after their in silico identification within NGS datasets. J Immunol Methods 420:50–55. https://doi.org/10.1016/j.jim.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  11. Matochko WL, Derda R (2015) Next-generation sequencing of phage-displayed peptide libraries. Method Mol Biol Clifton NJ 1248:249–266. https://doi.org/10.1007/978-1-4939-2020-4_17

    Article  CAS  Google Scholar 

  12. Turner KB, Naciri J, Liu JL et al (2016) Next-generation sequencing of a single domain antibody repertoire reveals quality of phage display selected candidates. PLoS One 11:e0149393. https://doi.org/10.1371/journal.pone.0149393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lövgren J, Pursiheimo J-P, Pyykkö M et al (2016) Next generation sequencing of all variable loops of synthetic single framework scFv-application in anti-HDL antibody selections. New Biotechnol 33:790–796. https://doi.org/10.1016/j.nbt.2016.07.009

    Article  CAS  Google Scholar 

  14. Ravn U, Didelot G, Venet S et al (2013) Deep sequencing of phage display libraries to support antibody discovery. Methods San Diego Calif 60:99–110. https://doi.org/10.1016/j.ymeth.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  15. Xia G, Chen L, Sera T et al (2002) Directed evolution of novel polymerase activities: mutation of a DNA polymerase into an efficient RNA polymerase. Proc Natl Acad Sci 99:6597–6602. https://doi.org/10.1073/pnas.102577799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Steiner D, Forrer P, Stumpp MT, Plückthun A (2006) Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display. Nat Biotechnol 24:823–831. https://doi.org/10.1038/nbt1218

    Article  CAS  PubMed  Google Scholar 

  17. Babraham Bioinformatics – FastQC A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 25 Jan 2023

  18. FASTX-Toolkit. http://hannonlab.cshl.edu/fastx_toolkit/. Accessed 25 Jan 2023

  19. Babraham Bioinformatics – Trim Galore! https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/. Accessed 25 Jan 2023

  20. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetJ 17:10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  21. Bushnell B (2014) BBMap: a fast, accurate, Splice-Aware Aligner

    Google Scholar 

  22. Danecek P, Bonfield JK, Liddle J et al (2021) Twelve years of SAMtools and BCFtools. GigaScience 10:giab008. https://doi.org/10.1093/gigascience/giab008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26. https://doi.org/10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Coster W, D’Hert S, Schultz DT et al (2018) NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34:2666–2669. https://doi.org/10.1093/bioinformatics/bty149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sedlazeck FJ, Rescheneder P, Smolka M et al (2018) Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods 15:461–468. https://doi.org/10.1038/s41592-018-0001-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu J, Smith GP (1996) Affinity maturation of phage-displayed peptide ligands. In: Methods in enzymology. Academic Press, pp 3–27

    Google Scholar 

  27. Alejaldre L, Pelletier JN, Quaglia D (2021) Methods for enzyme library creation: which one will you choose? BioEssays 43:2100052. https://doi.org/10.1002/bies.202100052

    Article  Google Scholar 

  28. Anonymous. Do you have a protocol for the isolation of single-stranded DNA from M13 phage using QIAGEN Plasmid Kits? https://www.qiagen.com/be/resources/faq?id=ef1c71d3-0e61-4650-804e-1a0bfcd85053&lang=en. Accessed 30 Jan 2023

  29. Read data from FASTQ file – MATLAB fastqread – MathWorks Benelux. https://nl.mathworks.com/help/bioinfo/ref/fastqread.html. Accessed 21 Mar 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Robben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Van Deuren, V., Plessers, S., Lavigne, R., Robben, J. (2024). Application of Deep Sequencing in Phage Display. In: Tumban, E. (eds) Bacteriophages. Methods in Molecular Biology, vol 2738. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3549-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3549-0_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3548-3

  • Online ISBN: 978-1-0716-3549-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics