Skip to main content

Construction of Nonnatural Cysteine-Cross-Linked Phage Libraries

  • Protocol
  • First Online:
Bacteriophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2738))

Abstract

Phage display is a powerful technique for rapid construction and screening of peptide libraries with over 109 sequence diversity. The M13 bacteriophage genome can be edited to incorporate randomized amino acids, which will be displayed on its minor coat protein (pIII). To enable screening of nonnatural cyclic peptides on phage, the minor coat protein can be modified with a chemical cross-linker. By taking advantage of the nucleophilicity and low abundance of free cysteines on phage, a variety of cysteine cross-linkers can be installed on the pIII protein. Here, we describe the construction of a chemically modified cyclic phage library through a cysteine cross-linking reagent, 1,3-dichloroacetone (DCA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahamad S, Bhat SA (2022) Recent update on the development of PCSK9 inhibitors for hypercholesterolemia treatment. J Med Chem 65(23):15513–15539. https://doi.org/10.1021/acs.jmedchem.2c01290

    Article  CAS  PubMed  Google Scholar 

  2. Tombling BJ, Lammi C, Lawrence N, Gilding EK, Grazioso G, Craik DJ, Wang CK (2021) Bioactive cyclization optimizes the affinity of a proprotein convertase subtilisin/kexin type 9 (PCSK9) peptide inhibitor. J Med Chem 64(5):2523–2533. https://doi.org/10.1021/acs.jmedchem.0c01766

    Article  CAS  PubMed  Google Scholar 

  3. Liu H, Zhao Z, Zhang L, Li Y, Jain A, Barve A, Jin W, Liu Y, Fetse J, Cheng K (2019) Discovery of low-molecular weight anti-PD-L1 peptides for cancer immunotherapy. J Immunother Cancer 7(1):270. https://doi.org/10.1186/s40425-019-0705-y

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zheng M, Haeffner F, Gao J (2022) N-terminal cysteine mediated backbone-side chain cyclization for chemically enhanced phage display. Chem Sci 13(28):8349–8354. https://doi.org/10.1039/D2SC03241D

    Article  PubMed  PubMed Central  Google Scholar 

  5. Assem N, Ferreira DJ, Wolan DW, Dawson PE (2015) Acetone-linked peptides: a convergent approach for peptide macrocyclization and labeling. Angew Chem Int Ed 54(30):8665–8668. https://doi.org/10.1002/anie.201502607

    Article  CAS  Google Scholar 

  6. Lin Q, Hopper D, Zhang H, Sfyris Qoon J, Shen Z, Karas JA, Hughes RA, Northfield SE (2020) 1,3-Dichloroacetone: a robust reagent for preparing bicyclic peptides. ACS Omega 5(4):1840–1850. https://doi.org/10.1021/acsomega.9b03152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen S, Lovell S, Lee S, Fellner M, Mace PD, Bogyo M (2021) Identification of highly selective covalent inhibitors by phage display. Nat Biotechnol 39(4):490–498. https://doi.org/10.1038/s41587-020-0733-7

    Article  CAS  PubMed  Google Scholar 

  8. Zheng M, Chen F-J, Li K, Reja RM, Haeffner F, Gao J (2022) Lysine-targeted reversible covalent ligand discovery for proteins via phage display. J Am Chem Soc 144(34):15885–15893. https://doi.org/10.1021/jacs.2c07375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Diderich P, Bertoldo D, Dessen P, Khan MM, Pizzitola I, Held W, Huelsken J, Heinis C (2016) Phage selection of chemically stabilized α-helical peptide ligands. ACS Chem Biol 11(5):1422–1427. https://doi.org/10.1021/acschembio.5b00963

    Article  CAS  PubMed  Google Scholar 

  10. Jo H, Meinhardt N, Wu Y, Kulkarni S, Hu X, Low KE, Davies PL, DeGrado WF, Greenbaum DC (2012) Development of α-helical calpain probes by mimicking a natural protein–protein interaction. J Am Chem Soc 134(42):17704–17713. https://doi.org/10.1021/ja307599z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen F-J, Zheng M, Nobile V, Gao J (2022) Fast and cysteine-specific modification of peptides, proteins and bacteriophage using chlorooximes. Chem Eur J 28(20):e202200058. https://doi.org/10.1002/chem.202200058

    Article  CAS  PubMed  Google Scholar 

  12. Ph.D.â„¢ Phage Display Libraries Instruction Manual (2018) New England Biolabs Inc. https://international.neb.com/-/media/nebus/files/manuals/manuale8100.pdf. Accessed 7 Jan 2023

  13. Instruction Manual Ph.D.â„¢ Peptide Display Cloning System (2022) New England Biolabs Inc. https://www.neb.com/-/media/nebus/files/manuals/manuale8101.pdf?rev=f1e7f087fe7c44aba0e495aba9dd3d13&hash=591221E969ED4D29BF7BE8D9B194ED68. Accessed 20 Dec 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chau, B., Liivak, K., Gao, J. (2024). Construction of Nonnatural Cysteine-Cross-Linked Phage Libraries. In: Tumban, E. (eds) Bacteriophages. Methods in Molecular Biology, vol 2738. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3549-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3549-0_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3548-3

  • Online ISBN: 978-1-0716-3549-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics