Skip to main content

Methods for the Assessment of Multisensory Processing: Behavioral and Neuropsychological Approaches

  • Protocol
  • First Online:
Psychophysiology Methods

Part of the book series: Neuromethods ((NM,volume 206))

Abstract

Since birth, we learn about the perceptual and social world through our senses. Learning to appropriately bind multisensory information is key to effectively interact with our surroundings.

In this chapter, we will review the behavioral, computational, and neurophysiological methods used to assess multisensory processing in healthy adult individuals. In the first part, we will provide an overview of fundamental principles governing the activity of multisensory neurons in the animal brain since these principles still provide an influential framework for the investigation of multisensory processing in humans too. In the second part, we will present a series of behavioral paradigms that have been adopted in the past 20 years to assess multisensory processing, particularly focusing on the difference between paradigms assessing multisensory integration and paradigms assessing crossmodal interactions, in which stimulation of one sensory system affects the experience in a different sense, typically leading to illusory percepts. The last part will provide a critical overview of electrophysiological and neuroimaging approaches to measure multisensory interactions in the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. James W (1890) The principles of psychology. Henry Holt & Co, New York

    Google Scholar 

  2. Molyneuxm M (1688) Letter to John Locke. In: de Beer E (ed) The correspondance of John Locke. Clarendon Press, Oxford

    Google Scholar 

  3. Stein BE (1993) Meredith MA. MIT Press, The merging of the senses

    Google Scholar 

  4. Stein BE, Stanford TR, Rowland BA (2020) Multisensory integration and the society for neuroscience: then and now. J Neurosci 40(1):3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boring EG (1942) Sensation and perception in the history of experimental psychology. Century Company, New York

    Google Scholar 

  6. Bolognini N, Russo C, Vallar G (2015) Crossmodal illusions in neurorehabilitation. Front Behav Neurosci 9(212):1–6

    Google Scholar 

  7. Bolognini N, Vallar G (2020) Hemainopia, spatial neglect, and their multisensory rehabilitation. In: Sathian K, Ramachandran VS (eds) Multisensory perception: from laboratory to clinic. Elsevier/Acamdemic Press, London, pp 423–447

    Chapter  Google Scholar 

  8. Santhian K, Ramachandran VS (2020) Multisensory perception: from laboratory to clinic. Elsevier/Acamdemic Press, London

    Google Scholar 

  9. Pourtois G, De Gelder B, Bol A, Crommelinck M (2005) Perception of facial expressions and voices and of their. Cortex 41:41–59

    Article  Google Scholar 

  10. Stanford TR, Quessy S, Stein BE (2005) Evaluating the operations underlying multisensory integration in the cat superior colliculus. J Neurosci 25(28):6499–6508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meredith MA, Stein BE (1996) Spatial determinants of multisensory integration in cat superior colliculus neurons. J Neurophysiol 75(5):1843–1857

    Article  CAS  PubMed  Google Scholar 

  12. Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. I Temporal Factors J Neurosci 7(10):3215–3229

    CAS  PubMed  Google Scholar 

  13. Stevenson RA, Ghose D, Fister JK, Sarko DK, Altieri NA, Nidiffer AR et al (2014) Identifying and quantifying multisensory integration: a tutorial review. Brain Topogr 27(6):707–730

    Article  PubMed  Google Scholar 

  14. Meredith MA, Stein BE (1986) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56(3):640–662

    Article  CAS  PubMed  Google Scholar 

  15. Holmes NP, Spence C (2005) Multisensory integration: space, time and superadditivity. Curr Biol 15(18):762–764

    Article  Google Scholar 

  16. Schroeder CE, Foxe J (2005) Multisensory contributions to low-level, “unisensory” processing. Curr Opin Neurobiol 15(4):454–458

    Article  CAS  PubMed  Google Scholar 

  17. Driver J, Noesselt T (2008) Multisensory interplay reveals Crossmodal influences on “sensory-specific” brain regions, neural responses, and judgments. Neuron 57(1):11–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Macaluso E (2006) Multisensory processing in sensory-specific cortical areas. Neuroscientist 12(4):327–338

    Article  PubMed  Google Scholar 

  19. Bolognini N, Maravita A (2007) Proprioceptive alignment of visual and somatosensory maps in the posterior parietal cortex. Curr Biol 17(21):1890–1895

    Article  CAS  PubMed  Google Scholar 

  20. Falchier A, Clavagnier S, Barone P, Kennedy H (2002) Anatomical evidence of multimodal integration in primate striate cortex. J Neurosci 22(13):5749–5759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghazanfar AA, Schroeder CE (2006) Is neocortex essentially multisensory? Trends Cogn Sci 10(6):278–285

    Article  PubMed  Google Scholar 

  22. Rockland KS, Ojima H (2003) Multisensory convergence in calcarine visual areas in macaque monkey. Int J Psychophysiol 50(1–2):19–26

    Article  PubMed  Google Scholar 

  23. Tyll S, Budinger E, Noesselt T (2011) Thalamic influences on multisensory integration. Commun Integr Biol 4(4):378–381

    Article  PubMed  PubMed Central  Google Scholar 

  24. Alais D, Newell FN, Mamassian P (2010) Multisensory processing in review: from physiology to behaviour. Seeing Perceiving 23:3–38

    Article  PubMed  Google Scholar 

  25. Manzone DM, Tremblay L (2023) Sensorimotor processing is dependent on observed speed during the observation of hand–hand and hand–object interactions. Psychol Res 87:1806–1815. https://doi.org/10.1007/s00426-022-01776-7

    Article  PubMed  Google Scholar 

  26. Bolognini N, Frassinetti F, Serino A, Làdavas E (2005) “Acoustical vision” of below threshold stimuli: interaction among spatially converging audiovisual inputs. Exp Brain Res 160(3):273–282

    Article  PubMed  Google Scholar 

  27. Frassinetti F, Bolognini N, Bottari D, Bonora A, Làdavas E (2005) Audiovisual integration in patients with visual deficit. J Cogn Neurosci 17(9):1442–1452

    Article  PubMed  Google Scholar 

  28. Miller J (1982) Divided attention: evidence for coactivation with redundant signals. Cogn Psychol 14(2):247–279

    Article  CAS  PubMed  Google Scholar 

  29. Miller J (1986) Timecourse of coactivation in bimodal divided attention. Percept Psychophys 40(5):331–343

    Article  CAS  PubMed  Google Scholar 

  30. Maravita A, Bolognini N, Bricolo E, Marzi CA, Savazzi S (2008) Is audiovisual integration subserved by the superior colliculus in humans? Neuroreport 19(3):271–275

    Article  PubMed  Google Scholar 

  31. Van Eijk RLJ, Kohlrausch A, Juola JF, Van De Par S (2008) Audiovisual synchrony and temporal order judgments: effects of experimental method and stimulus type. Percept Psychophys 70(6):955–968

    Article  PubMed  Google Scholar 

  32. Stecker GC (2018) Temporal binding of auditory spatial information across dynamic binaural events. Atten Percept Psychophys 80(1):14–20

    Article  PubMed  Google Scholar 

  33. Love SA, Petrini K, Cheng A, Pollick FE (2013) A psychophysical investigation of differences between synchrony and temporal order judgments. PLoS One 8(1):1–12

    Article  Google Scholar 

  34. Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14(3):257–262

    Article  CAS  PubMed  Google Scholar 

  35. Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870):429–433

    Article  CAS  PubMed  Google Scholar 

  36. Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8(4):162–169

    Article  PubMed  Google Scholar 

  37. Manzone DM, Tremblay L (2020) Contributions of exercise-induced fatigue versus intertrial tendon vibration on visual-proprioceptive weighting for goal-directed movement. J Neurophysiol 124(3):802–814

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sarlegna FR, Sainburg RL (2007) The effect of target modality on visual and proprioceptive contributions to the control of movement distance. Exp Brain Res 176(2):267–280

    Article  PubMed  Google Scholar 

  39. Sober SJ, Sabes PN (2003) Multisensory integration during motor planning. J Neurosci 23(18):6982–6992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Campos JL, Butler JS, Bülthoff HH (2014) Contributions of visual and proprioceptive information to travelled distance estimation during changing sensory congruencies. Exp Brain Res 232:3277–3289. https://doi.org/10.1007/s00221-014-4011-0

    Article  PubMed  Google Scholar 

  41. Howard IP, Templeton WB (1966) Human spatial orientation. Wiley, London

    Google Scholar 

  42. Rock I, Victor J (1964) Vision and touch: an experimentally created conflict between the two senses. Science 143(3606):594–596

    Article  CAS  PubMed  Google Scholar 

  43. Mcgurk H, Macdonald J (1976) Hearing lips and seeing voices. Nature 264(5588):746–748

    Article  CAS  PubMed  Google Scholar 

  44. Shams L, Kamitani Y, Shimojo S (2000) What you see is what you hear. Nature 408:788

    Article  CAS  PubMed  Google Scholar 

  45. Tremblay L, Nguyen T (2010) Real-time decreased sensitivity to an audio-visual illusion during goal-directed reaching. PLoS One 5(1):1–5

    Article  Google Scholar 

  46. Loria T, Tanaka K, Watanabe K, Tremblay L (2020) Deploying attention to the target location of a pointing action modulates audiovisual processes at nontarget locations. Atten Percept Psychophys 82(7):3507–3520

    Article  PubMed  Google Scholar 

  47. Manson GA, Manzone D, de Grosbois J, Goodman R, Wong J, Reid C et al (2017) Let us not play it by ear: auditory gating and audiovisual perception during rapid goal-directed action. IEEE Trans Cogn Dev Syst 10(3):659–667

    Article  Google Scholar 

  48. Botvinick M, Cohen JD (1998) Rubber hand ‘feels’ what eyes see. Nature 391:756

    Article  CAS  PubMed  Google Scholar 

  49. Tsakiris M, Haggard P (2005) The rubber hand illusion revisited: visuotactile integration and self-attribution. J Exp Psychol Hum Percept Perform 31(1):80–91

    Article  PubMed  Google Scholar 

  50. Kammers MPM, Kootker JA, Hogendoorn H, Dijkerman HC (2010) How many motoric body representations can we grasp? Exp Brain Res 202(1):203–212

    Article  PubMed  Google Scholar 

  51. Giurgola S, Crico C, Farne A, Bolognini N (2021) The sense of body ownership shapes the visual representation of body size. J Exp Psychol Gen 151(1–13):872

    PubMed  Google Scholar 

  52. Petkova VI, Ehrsson HH (2008) If I were you: perceptual illusion of body swapping. PLoS One 3(12):1–9

    Article  Google Scholar 

  53. Lenggenhager B, Tadi T, Metzinger T, Blanke O (2007) Video ergo sum: manipulating bodily self-consciousness. Science 317(5841):1096–1099

    Article  CAS  PubMed  Google Scholar 

  54. Calvert GA, Campbell R, Brammer MJ (2000) Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Curr Biol 10(11):649–657

    Article  CAS  PubMed  Google Scholar 

  55. Molholm S, Ritter W, Murray MM, Javitt DC, Schroeder CE, Foxe JJ (2002) Multisensory auditory-visual interactions during early sensory processing in humans: a high-density electrical mapping study. Cogn Brain Res 14(1):115–128

    Article  Google Scholar 

  56. Foxe JJ, Morocz IA, Murray MM, Higgins BA, Javitt DC, Schroeder CE (2000) Multisensory auditory-somatosensory interactions in early cortical processing revealed by high-density electrical mapping. Cogn Brain Res 10(1–2):77–83

    Article  CAS  Google Scholar 

  57. Senkowski D, Saint-Amour D, Kelly SP, Foxe JJ (2007) Multisensory processing of naturalistic objects in motion: a high-density electrical mapping and source estimation study. NeuroImage 36(3):877–888

    Article  PubMed  Google Scholar 

  58. Clark VP, Fan S, Hillyard SA (1995) Identification of early VEP generators by retinotopic analyses. Hum Brain Mapp 2:170–187

    Article  Google Scholar 

  59. Besle J, Fort A, Giard M-H (2004) Interest and validity of the additive model in electrophysiological studies of multisensory interactions. Cogn Process 5(3):189–192

    Article  Google Scholar 

  60. Giard MH, Besle J (2010) Methodological considerations: electrophysiology of multisensory interactions in humans. In: Naumer MJ, Kaiser J (eds) Multisensory object perception in the primate brain. Springer, New York, pp 55–70

    Chapter  Google Scholar 

  61. Hillyard SA, Teder-Sälejärvi WA, Münte TF (1998) Temporal dynamics of early perceptual processing. Curr Opin Neurobiol 8(2):202–210

    Article  CAS  PubMed  Google Scholar 

  62. Talsma D, Woldorff MG (2005) Selective attention and multisensory integration: multiple phases of effects on the evoked brain activity. J Cogn Neurosci 17(7):1098–1114

    Article  PubMed  Google Scholar 

  63. Stevenson RA, Bushmakin M, Kim S, Wallace MT, Puce A, James TW (2012) Inverse effectiveness and multisensory interactions in visual event-related potentials with audiovisual speech. Brain Topogr 25(3):308–326

    Article  PubMed  PubMed Central  Google Scholar 

  64. Michel CM, Brunet D (2019) EEG source imaging: a practical review of the analysis steps. Front Neurol 10(325):1–18

    Google Scholar 

  65. Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20(4):249–264

    Article  PubMed  Google Scholar 

  66. Michel CM, Murray MM (2012) Towards the utilization of EEG as a brain imaging tool. Neuroimage 61(2):371–385. Available from:. https://doi.org/10.1016/j.neuroimage.2011.12.039

    Article  PubMed  Google Scholar 

  67. Altieri N, Stevenson RA, Wallace MT, Wenger MJ (2015) Learning to associate auditory and visual stimuli: behavioral and neural mechanisms. Brain Topogr 28(3):479–493

    Article  PubMed  Google Scholar 

  68. Cappe C, Thelen A, Romei V, Thut G, Murray MM (2012) Looming signals reveal synergistic principles of multisensory integration. J Neurosci 32(4):1171–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mishra J, Martinez A, Hillyard SA (2008) Cortical processes underlying sound-induced flash fusion. Brain Res 1242:102–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Roa Romero Y, Senkowski D, Keil J (2015) Early and late beta-band power reflect audiovisual perception in the McGurk illusion. J Neurophysiol 113(7):2342–2350

    Article  PubMed  PubMed Central  Google Scholar 

  71. Van Erp JBF, Philippi TG, de Winkel KN, Werkhoven P (2014) Pre- and post-stimulus EEG patterns associated with the touch-induced illusory flash. Neurosci Lett 562:79–84

    Article  PubMed  Google Scholar 

  72. Mishra J, Martinez A, Sejnowski TJ, Hillyard SA (2007) Early cross-modal interactions in auditory and visual cortex underlie a sound-induced visual illusion. J Neurosci 27(15):4120–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16(13):4207–4221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dale AM, Buckner RL (1997) Selective averaging of individual trials using fMRI. NeuroImage 5:329–340

    CAS  Google Scholar 

  75. Glover GH (1999) Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage 9(4):416–429

    Article  CAS  PubMed  Google Scholar 

  76. Heeger DJ, Ress D (2002) What does fMRI tell us about neuronal activity? Nat Rev Neurosci 3(2):142–151

    Article  CAS  PubMed  Google Scholar 

  77. Alvarado JC, Stanford TR, Vaughan JW, Stein BE (2007) Cortex mediates multisensory but not unisensory integration in superior colliculus. J Neurosci 27(47):12775–12786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Perrault TJ, Vaughan JW, Stein BE, Wallace MT (2003) Neuron-specific response characteristics predict the magnitude of multisensory integration. J Neurophysiol 90(6):4022–4026

    Article  PubMed  Google Scholar 

  79. Stanford TR, Stein BE (2007) Superadditivity in multisensory integration: putting the computation in context. Neuroreport 18(8):787–792

    Article  PubMed  Google Scholar 

  80. Stein BE, Stanford TR (2008) Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 9(4):255–266

    Article  CAS  PubMed  Google Scholar 

  81. Allman BL, Meredith MA (2007) Multisensory processing in “unimodal” neurons: cross-modal subthreshold auditory effects in cat extrastriate visual cortex. J Neurophysiol 98(1):545–549

    Article  PubMed  Google Scholar 

  82. Allman BL, Bittencourt-Navarrete RE, Keniston LP, Medina AE, Wang MY, Meredith MA (2008) Do cross-modal projections always result in multisensory integration? Cereb Cortex 18(9):2066–2076

    Article  PubMed  PubMed Central  Google Scholar 

  83. Barraclough NE, Xiao D, Baker CI, Oram MW, Perrett DI (2005) Integration of visual and auditory information by superior temporal sulcus neurons responsive to the sight of actions. J Cogn Neurosci 17(3):377–391

    Article  PubMed  Google Scholar 

  84. Benevento LA, Fallon J, Davis BJ, Rezak M (1977) Auditory-visual interaction in single cells in the cortex of the superior temporal sulcus and the orbital frontal cortex of the macaque monkey. Exp Neurol 57(3):849–872

    Article  CAS  PubMed  Google Scholar 

  85. Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46(2):369–384

    Article  CAS  PubMed  Google Scholar 

  86. Hikosaka K, Iwai E, Saito HA, Tanaka K (1988) Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. J Neurophysiol 60(5):1615–1637

    Article  CAS  PubMed  Google Scholar 

  87. Meredith MA (2002) On the neuronal basis for multisensory convergence: a brief overview. Cogn Brain Res 14(1):31–40

    Article  Google Scholar 

  88. Alex Meredith M, Stein BE (1983) Interactions among converging sensory inputs in the superior colliculus. Science 221(4608):389–391

    Article  Google Scholar 

  89. Calvert GA (2001) Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cereb Cortex 11(12):1110–1123

    Article  CAS  PubMed  Google Scholar 

  90. Beauchamp MS (2005) Statistical criteria in fMRI studies of multisensory integration. Neuroinformatics 3:93–113

    Article  PubMed  PubMed Central  Google Scholar 

  91. Beauchamp MS, Argall BD, Bodurka J, Duyn JH, Martin A (2004) Unraveling multisensory integration: patchy organization within human STS multisensory cortex. Nat Neurosci 7(11):1190–1192

    Article  CAS  PubMed  Google Scholar 

  92. Beauchamp MS, Lee KE, Argall BD, Martin A (2004) Integration of auditory and visual information about objects in superior temporal sulcus. Neuron 41(5):809–823

    Article  CAS  PubMed  Google Scholar 

  93. Laurienti PJ, Perrault TJ, Stanford TR, Wallace MT, Stein BE (2005) On the use of superadditivity as a metric for characterizing multisensory integration in functional neuroimaging studies. Exp Brain Res 166(3–4):289–297

    Article  PubMed  Google Scholar 

  94. Stevenson RA, Geoghegan ML, James TW (2007) Superadditive BOLD activation in superior temporal sulcus with threshold non-speech objects. Exp Brain Res 179(1):85–95

    Article  PubMed  Google Scholar 

  95. James TW, Stevenson R (2012) The use of fMRI to assess multisensory integration. In: Murray MM, Wallace MT (eds) The neural basis of multisensory processes. CRC press/Taylor & Francis, Boca Raton

    Google Scholar 

  96. Stevenson RA, James TW (2009) Audiovisual integration in human superior temporal sulcus: inverse effectiveness and the neural processing of speech and object recognition. NeuroImage 44(3):1210–1223

    Article  PubMed  Google Scholar 

  97. Binder JR, Frost JA, Hammeke TA, Bellgowan PSF, Rao SM, Cox RW (1999) Conceptual processing during the conscious resting state: a functional MRI study. J Cogn Neurosci 11(1):80–93

    Article  CAS  PubMed  Google Scholar 

  98. Stark CEL, Squire LR (2001) When zero is not zero: the problem of ambiguous baseline conditions in fMRI. Proc Natl Acad Sci USA 98(22):12760–12765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Noppenay U (2012) Characterization of multisensory integration with fMRI experimental design, statistical analysis, and interpretation. In: Murray MM, Wallace MT (eds) The use of fMRI to assess multisensory integration. CRC press/Taylor & Francis, Boca Raton

    Google Scholar 

  100. Grill-Spector K, Henson R, Martin A (2006) Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci 10(1):14–23

    Article  PubMed  Google Scholar 

  101. Avidan G, Hasson U, Hendler T, Zohary E, Malach R (2002) Analysis of the neuronal selectivity underlying low fMRI signals. Curr Biol 12(12):964–972

    Article  CAS  PubMed  Google Scholar 

  102. Tal N, Amedi A (2009) Multisensory visual-tactile object related network in humans: insights gained using a novel crossmodal adaptation approach. Exp Brain Res 198(2–3):165–182

    Article  PubMed  PubMed Central  Google Scholar 

  103. Noppeney U, Josephs O, Hocking J, Price CJ, Friston KJ (2008) The effect of prior visual information on recognition of speech and sounds. Cereb Cortex 18(3):598–609

    Article  PubMed  Google Scholar 

  104. Hasson U, Skipper JI, Nusbaum HC, Small SL (2007) Abstract coding of audiovisual speech: beyond sensory representation. Neuron 56(6):1116–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Patané I, Brozzoli C, Koun E, Frassinetti F, Farnè A (2020) Me, you, and our object: peripersonal space recruitment during executed and observed actions depends on object ownership. J Exp Psychol Gen 150(7):1410–1422

    Article  Google Scholar 

  106. Bolognini N, Maravita A (2011) Uncovering multisensory processing through non-invasive brain stimulation. Front Psychol 2:1–10

    Article  Google Scholar 

  107. Yau JM, DeAngelis GC, Angelaki DE (2015) Dissecting neural circuits for multisensory integration and crossmodal processing. Philos Trans R Soc B Biol Sci 370(1677):1–15

    Article  Google Scholar 

  108. Sours C, Raghavan P, Foxworthy WA, Meredith MA, El Metwally D, Zhuo J et al (2017) Cortical multisensory connectivity is present near birth in humans. Brain Imaging Behav 11(4):1207–1213

    Article  PubMed  PubMed Central  Google Scholar 

  109. Bahrick LE, Lickliter R, Flom R (2004) Intersensory redundancy guides the development of selective attention, perception, and cognition in infancy. Curr Dir Psychol Sci 13(3):99–102

    Article  Google Scholar 

  110. Bahrick LE, Lickliter R (2002) Intersensory redundancy guides early perceptual and cognitive development. Adv child Dev 30:153–187

    Google Scholar 

  111. Zhang J, Meng Y, He J, Xiang Y, Wu C, Wang S et al (2019) McGurk effect by individuals with autism Spectrum disorder and typically developing controls: a systematic review and meta-analysis. J Autism Dev Disord 49(1):34–43

    Article  PubMed  Google Scholar 

  112. Wallace MT, Woynaroski TG, Stevenson RA (2020) Multisensory integration as a window into orderly and disrupted cognition and communication. Annu Rev Psychol 71:193–219

    Article  PubMed  Google Scholar 

  113. Behrendt R-P, Young C (2004) Hallucinations in schizophrenia, sensory impairment, and brain disease: a unifying model. Behav Brain Sci 27(6):771–830

    Article  PubMed  Google Scholar 

  114. Javitt DC (2009) Sensory processing in schizophrenia: neither simple nor intact. Schizophr Bull 35(6):1059–1064

    Article  PubMed  PubMed Central  Google Scholar 

  115. Patten E, Belardi K, Baranek GT, Watson LR, Labban JD, Oller DK (2014) Vocal patterns in infants with autism spectrum disorder: canonical babbling status and vocalization frequency. J Autism Dev Disord 44(10):2413–2428

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bolognini N, Convento S, Rossetti A, Merabet LB (2013) Multisensory processing after a brain damage: clues on post-injury crossmodal plasticity from neuropsychology. Neurosci Biobehav Rev 37(3):269–278

    Article  PubMed  Google Scholar 

  117. Brighina F, Bolognini N, Cosentino G, MacCora S, Paladino P, Baschi R et al (2015) Visual cortex hyperexcitability in migraine in response to sound-induced flash illusions. Neurology 84(20):2057–2061

    Article  PubMed  Google Scholar 

  118. Maccora S, Bolognini N, Cosentino G, Baschi R, Vallar G, Fierro B et al (2020) Multisensorial perception in chronic migraine and the role of medication overuse. J Pain 21(7–8):919–929

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Bolognini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Manzone, D.M., Nava, E., Bolognini, N. (2024). Methods for the Assessment of Multisensory Processing: Behavioral and Neuropsychological Approaches. In: Valeriani, M., de Tommaso, M. (eds) Psychophysiology Methods. Neuromethods, vol 206. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3545-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3545-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3544-5

  • Online ISBN: 978-1-0716-3545-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics