Skip to main content

Reverse Genetics Systems for Filoviruses

  • Protocol
  • First Online:
Reverse Genetics of RNA Viruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2733))

Abstract

Filoviruses are causative agents of severe hemorrhagic fevers with high case fatality rates in humans. For studies of virus biology and the subsequent development of countermeasures, reverse genetic systems, and especially those facilitating the generation of recombinant filoviruses, are indispensable. Here, we describe the generation of recombinant filoviruses from cDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuhn JH, Amarasinghe GK, Basler CF, Bavari S, Bukreyev A, Chandran K, Crozier I, Dolnik O, Dye JM, Formenty PBH, Griffiths A, Hewson R, Kobinger GP, Leroy EM, Muhlberger E, Netesov SV, Palacios G, Palyi B, Paweska JT, Smither SJ, Takada A, Towner JS, Wahl V, Ictv Report C (2019) ICTV virus taxonomy profile: filoviridae. J Gen Virol 100(6):911–912. https://doi.org/10.1099/jgv.0.001252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Burk R, Bollinger L, Johnson JC, Wada J, Radoshitzky SR, Palacios G, Bavari S, Jahrling PB, Kuhn JH (2016) Neglected filoviruses. FEMS Microbiol Rev 40(4):494–519. https://doi.org/10.1093/femsre/fuw010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yamaoka S, Ebihara H (2021) Pathogenicity and virulence of Ebolaviruses with species- and variant-specificity. Virulence 12(1):885–901. https://doi.org/10.1080/21505594.2021.1898169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. History of Ebola Virus Disease (EVD) Outbreaks. CDC. https://www.cdc.gov/vhf/ebola/history/chronology.html. Accessed 30 Mar 2022

  5. WHO (2020) Ebola virus disease Democratic Republic of Congo: external situation report 98/2020. https://www.who.int/publications/i/item/10665-332654. Accessed 30 Mar 2022

  6. Goldstein T, Anthony SJ, Gbakima A, Bird BH, Bangura J, Tremeau-Bravard A, Belaganahalli MN, Wells HL, Dhanota JK, Liang E, Grodus M, Jangra RK, DeJesus VA, Lasso G, Smith BR, Jambai A, Kamara BO, Kamara S, Bangura W, Monagin C, Shapira S, Johnson CK, Saylors K, Rubin EM, Chandran K, Lipkin WI, Mazet JAK (2018) The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat Microbiol 3(10):1084–1089. https://doi.org/10.1038/s41564-018-0227-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Negredo A, Palacios G, Vazquez-Moron S, Gonzalez F, Dopazo H, Molero F, Juste J, Quetglas J, Savji N, de la Cruz MM, Herrera JE, Pizarro M, Hutchison SK, Echevarria JE, Lipkin WI, Tenorio A (2011) Discovery of an ebolavirus-like filovirus in europe. PLoS Pathog 7(10):e1002304. https://doi.org/10.1371/journal.ppat.1002304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang XL, Tan CW, Anderson DE, Jiang RD, Li B, Zhang W, Zhu Y, Lim XF, Zhou P, Liu XL, Guan W, Zhang L, Li SY, Zhang YZ, Wang LF, Shi ZL (2019) Characterization of a filovirus (Mengla virus) from Rousettus bats in China. Nat Microbiol 4(3):390–395. https://doi.org/10.1038/s41564-018-0328-y

    Article  CAS  PubMed  Google Scholar 

  9. FDA (2020) FDA approves first treatment for Ebola virus. https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-ebola-virus. Accessed 30 Mar 2022

  10. FDA (2020) FDA approves treatment for Ebola virus. https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-treatment-ebola-virus. Accessed 30 Mar 2022

  11. FDA (2019) First FDA-approved vaccine for the prevention of Ebola virus disease, marking a critical milestone in public health preparedness and response. https://www.fda.gov/news-events/press-announcements/first-fda-approved-vaccine-prevention-ebola-virus-disease-marking-critical-milestone-public-health. Accessed 30 Mar 2022

  12. EMA (2019) Ervebo. https://www.ema.europa.eu/en/medicines/human/EPAR/ervebo. Accessed 30 Mar 2022

  13. EMA (2020) Zabdeno. https://www.ema.europa.eu/en/medicines/human/EPAR/zabdeno. Accessed 30 Mar 2022

  14. EMA (2020) Mvabea. https://www.ema.europa.eu/en/medicines/human/EPAR/mvabea. Accessed 30 Mar 2022

  15. Muhlberger E, Weik M, Volchkov VE, Klenk HD, Becker S (1999) Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J Virol 73(3):2333–2342. https://doi.org/10.1128/JVI.73.3.2333-2342.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Banadyga L, Hoenen T, Ambroggio X, Dunham E, Groseth A, Ebihara H (2017) Ebola virus VP24 interacts with NP to facilitate nucleocapsid assembly and genome packaging. Sci Rep 7(1):7698. https://doi.org/10.1038/s41598-017-08167-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Watt A, Moukambi F, Banadyga L, Groseth A, Callison J, Herwig A, Ebihara H, Feldmann H, Hoenen T (2014) A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity. J Virol 88(18):10511–10524. https://doi.org/10.1128/JVI.01272-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reid SP, Leung LW, Hartman AL, Martinez O, Shaw ML, Carbonnelle C, Volchkov VE, Nichol ST, Basler CF (2006) Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation. J Virol 80(11):5156–5167. https://doi.org/10.1128/JVI.02349-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feagins AR, Basler CF (2015) Lloviu virus VP24 and VP35 proteins function as innate immune antagonists in human and bat cells. Virology 485:145–152. https://doi.org/10.1016/j.virol.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  20. He FB, Khan H, Huttunen M, Kolehmainen P, Melen K, Maljanen S, Qu M, Jiang M, Kakkola L, Julkunen I (2021) Filovirus VP24 proteins differentially regulate RIG-I and MDA5-dependent type I and III interferon promoter activation. Front Immunol 12:694105. https://doi.org/10.3389/fimmu.2021.694105

    Article  CAS  PubMed  Google Scholar 

  21. Noda T, Sagara H, Suzuki E, Takada A, Kida H, Kawaoka Y (2002) Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP. J Virol 76(10):4855–4865. https://doi.org/10.1128/jvi.76.10.4855-4865.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Valmas C, Grosch MN, Schumann M, Olejnik J, Martinez O, Best SM, Krahling V, Basler CF, Muhlberger E (2010) Marburg virus evades interferon responses by a mechanism distinct from ebola virus. PLoS Pathog 6(1):e1000721. https://doi.org/10.1371/journal.ppat.1000721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moller-Tank S, Maury W (2015) Ebola virus entry: a curious and complex series of events. PLoS Pathog 11(4):e1004731. https://doi.org/10.1371/journal.ppat.1004731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wendt L, Bostedt L, Hoenen T, Groseth A (2019) High-throughput screening for negative-stranded hemorrhagic fever viruses using reverse genetics. Antivir Res 170:104569. https://doi.org/10.1016/j.antiviral.2019.104569

    Article  CAS  PubMed  Google Scholar 

  25. Volchkov VE, Volchkova VA, Muhlberger E, Kolesnikova LV, Weik M, Dolnik O, Klenk HD (2001) Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291(5510):1965–1969. https://doi.org/10.1126/science.1057269

    Article  CAS  PubMed  Google Scholar 

  26. Neumann G, Feldmann H, Watanabe S, Lukashevich I, Kawaoka Y (2002) Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J Virol 76(1):406–410. https://doi.org/10.1128/jvi.76.1.406-410.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoenen T, Shabman RS, Groseth A, Herwig A, Weber M, Schudt G, Dolnik O, Basler CF, Becker S, Feldmann H (2012) Inclusion bodies are a site of ebolavirus replication. J Virol 86(21):11779–11788. https://doi.org/10.1128/JVI.01525-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brandt J, Wendt L, Bodmer BS, Mettenleiter TC, Hoenen T (2020) The cellular protein CAD is recruited into Ebola virus inclusion bodies by the nucleoprotein NP to facilitate genome replication and transcription. Cells 9(5). https://doi.org/10.3390/cells9051126

  29. Wendt L, Brandt J, Bodmer BS, Reiche S, Schmidt ML, Traeger S, Hoenen T (2020) The Ebola virus nucleoprotein recruits the nuclear RNA export factor NXF1 into inclusion bodies to facilitate viral protein expression. Cells 9(1). https://doi.org/10.3390/cells9010187

  30. Groseth A, Marzi A, Hoenen T, Herwig A, Gardner D, Becker S, Ebihara H, Feldmann H (2012) The Ebola virus glycoprotein contributes to but is not sufficient for virulence in vivo. PLoS Pathog 8(8):e1002847. https://doi.org/10.1371/journal.ppat.1002847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prins KC, Delpeut S, Leung DW, Reynard O, Volchkova VA, Reid SP, Ramanan P, Cardenas WB, Amarasinghe GK, Volchkov VE, Basler CF (2010) Mutations abrogating VP35 interaction with double-stranded RNA render Ebola virus avirulent in guinea pigs. J Virol 84(6):3004–3015. https://doi.org/10.1128/JVI.02459-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ebihara H, Takada A, Kobasa D, Jones S, Neumann G, Theriault S, Bray M, Feldmann H, Kawaoka Y (2006) Molecular determinants of Ebola virus virulence in mice. PLoS Pathog 2(7):e73. https://doi.org/10.1371/journal.ppat.0020073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neumann G, Geisbert TW, Ebihara H, Geisbert JB, Daddario-DiCaprio KM, Feldmann H, Kawaoka Y (2007) Proteolytic processing of the Ebola virus glycoprotein is not critical for Ebola virus replication in nonhuman primates. J Virol 81(6):2995–2998. https://doi.org/10.1128/JVI.02486-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schudt G, Kolesnikova L, Dolnik O, Sodeik B, Becker S (2013) Live-cell imaging of Marburg virus-infected cells uncovers actin-dependent transport of nucleocapsids over long distances. Proc Natl Acad Sci U S A 110(35):14402–14407. https://doi.org/10.1073/pnas.1307681110

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mittler E, Schudt G, Halwe S, Rohde C, Becker S (2018) A fluorescently labeled Marburg Virus glycoprotein as a new tool to study viral transport and assembly. J Infect Dis 218(suppl_5):S318–S326. https://doi.org/10.1093/infdis/jiy424

    Article  PubMed  Google Scholar 

  36. Ebihara H, Theriault S, Neumann G, Alimonti JB, Geisbert JB, Hensley LE, Groseth A, Jones SM, Geisbert TW, Kawaoka Y, Feldmann H (2007) In vitro and in vivo characterization of recombinant Ebola viruses expressing enhanced green fluorescent protein. J Infect Dis 196(Suppl 2):S313–S322. https://doi.org/10.1086/520590

    Article  CAS  PubMed  Google Scholar 

  37. Kondratowicz AS, Lennemann NJ, Sinn PL, Davey RA, Hunt CL, Moller-Tank S, Meyerholz DK, Rennert P, Mullins RF, Brindley M, Sandersfeld LM, Quinn K, Weller M, McCray PB Jr, Chiorini J, Maury W (2011) T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc Natl Acad Sci U S A 108(20):8426–8431. https://doi.org/10.1073/pnas.1019030108

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tsuda Y, Hoenen T, Banadyga L, Weisend C, Ricklefs SM, Porcella SF, Ebihara H (2015) An improved reverse genetics system to overcome cell-type-dependent Ebola virus genome plasticity. J Infect Dis. https://doi.org/10.1093/infdis/jiu681

  39. Hoenen T, Groseth A, Feldmann F, Marzi A, Ebihara H, Kobinger G, Gunther S, Feldmann H (2014) Complete genome sequences of three ebola virus isolates from the 2014 outbreak in west Africa. Genome Announc 2(6):e01331–e01314. https://doi.org/10.1128/genomeA.01331-14

    Article  PubMed  Google Scholar 

  40. Volchkova VA, Dolnik O, Martinez MJ, Reynard O, Volchkov VE (2011) Genomic RNA editing and its impact on Ebola virus adaptation during serial passages in cell culture and infection of guinea pigs. J Infect Dis 204(Suppl 3):S941–S946. https://doi.org/10.1093/infdis/jir321

    Article  CAS  PubMed  Google Scholar 

  41. Haddock E, Feldmann F, Feldmann H (2016) Effective chemical inactivation of Ebola virus. Emerg Infect Dis 22(7):1292–1294. https://doi.org/10.3201/eid2207.160233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Smither SJ, Weller SA, Phelps A, Eastaugh L, Ngugi S, O’Brien LM, Steward J, Lonsdale SG, Lever MS (2015) Buffer AVL alone does not inactivate Ebola virus in a representative clinical sample type. J Clin Microbiol 53(10):3148–3154. https://doi.org/10.1128/JCM.01449-15

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Friedrich-Loeffler-Institut through intramural funding and the Deutsche Forschungsgemeinschaft (DFG; grant number 452208680). The authors further are grateful to Allison Groseth (Friedrich-Loeffler-Institut) for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hoenen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bodmer, B.S., Hoenen, T. (2024). Reverse Genetics Systems for Filoviruses. In: Pérez, D.R. (eds) Reverse Genetics of RNA Viruses. Methods in Molecular Biology, vol 2733. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3533-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3533-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3532-2

  • Online ISBN: 978-1-0716-3533-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics