Skip to main content

Exploring the Archaeal Virosphere by Metagenomics

  • Protocol
  • First Online:
Viral Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2732))

Abstract

During the past decade, environmental research has demonstrated that archaea are abundant and widespread in nature and play important ecological roles at a global scale. Currently, however, the majority of archaeal lineages cannot be cultivated under laboratory conditions and are known exclusively or nearly exclusively through metagenomics. A similar trend extends to the archaeal virosphere, where isolated representatives are available for a handful of model archaeal virus-host systems. Viral metagenomics provides an alternative way to circumvent the limitations of culture-based virus discovery and offers insight into the diversity, distribution, and environmental impact of uncultured archaeal viruses. Presently, metagenomics approaches have been successfully applied to explore the viromes associated with various lineages of extremophilic and mesophilic archaea, including Asgard archaea (Asgardarchaeota), ANME-1 archaea (Methanophagales), thaumarchaea (Nitrososphaeria), altiarchaea (Altiarchaeota), and marine group II archaea (Poseidoniales). Here, we provide an overview of methods widely used in archaeal virus metagenomics, covering metavirome preparation, genome annotation, phylogenetic and phylogenomic analyses, and archaeal host assignment. We hope that this summary will contribute to further exploration and characterization of the enigmatic archaeal virome lurking in diverse environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH et al (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–358

    Article  CAS  PubMed  Google Scholar 

  2. Liu Y, Makarova KS, Huang WC et al (2021) Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593:553–557

    Article  CAS  PubMed  Google Scholar 

  3. Baker BJ, De Anda V, Seitz KW et al (2020) Diversity, ecology and evolution of Archaea. Nat Microbiol 5:887–900

    Article  CAS  PubMed  Google Scholar 

  4. Arbab S, Ullah H, Khan MIU et al (2022) Diversity and distribution of thermophilic microorganisms and their applications in biotechnology. J Basic Microbiol 62:95–108

    Article  CAS  PubMed  Google Scholar 

  5. Danovaro R, Rastelli E, Corinaldesi C et al (2017) Marine archaea and archaeal viruses under global change. F1000Res 6:1241

    Article  PubMed  PubMed Central  Google Scholar 

  6. Offre P, Spang A, Schleper C (2013) Archaea in biogeochemical cycles. Annu Rev Microbiol 67:437–457

    Article  CAS  PubMed  Google Scholar 

  7. Zou D, Liu H, Li M (2020) Community, distribution, and ecological roles of estuarine archaea. Front Microbiol 11:2060

    Article  PubMed  PubMed Central  Google Scholar 

  8. Adam PS, Borrel G, Brochier-Armanet C et al (2017) The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J 11:2407–2425

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ogunrinola GA, Oyewale JO, Oshamika OO et al (2020) The human microbiome and its impacts on health. Int J Microbiol 2020:8045646

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wigington CH, Sonderegger D, Brussaard CP et al (2016) Re-examination of the relationship between marine virus and microbial cell abundances. Nat Microbiol 1:15024

    Article  CAS  PubMed  Google Scholar 

  11. Suttle CA (2007) Marine viruses–major players in the global ecosystem. Nat Rev Microbiol 5:801–812

    Article  CAS  PubMed  Google Scholar 

  12. Breitbart M, Bonnain C, Malki K et al (2018) Phage puppet masters of the marine microbial realm. Nat Microbiol 3:754–766

    Article  CAS  PubMed  Google Scholar 

  13. Jurgensen SK, Roux S, Schwenck SM et al (2022) Viral community analysis in a marine oxygen minimum zone indicates increased potential for viral manipulation of microbial physiological state. ISME J 16:972–982

    Article  CAS  PubMed  Google Scholar 

  14. Kieft K, Zhou Z, Anderson RE et al (2021) Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages. Nat Commun 12:3503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jacobson TB, Callaghan MM, Amador-Noguez D (2021) Hostile takeover: how viruses reprogram prokaryotic metabolism. Annu Rev Microbiol 75:515–539

    Article  CAS  PubMed  Google Scholar 

  16. Danovaro R, Dell'Anno A, Corinaldesi C et al (2016) Virus-mediated archaeal hecatomb in the deep seafloor. Sci Adv 2:e1600492

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee S, Sieradzki ET, Nicol GW et al (2023) Propagation of viral genomes by replicating ammonia-oxidising archaea during soil nitrification. ISME J 17:309–314

    CAS  PubMed  Google Scholar 

  18. Liu Y, Demina TA, Roux S et al (2021) Diversity, taxonomy, and evolution of archaeal viruses of the class Caudoviricetes. PLoS Biol 19:e3001442

    Article  PubMed  PubMed Central  Google Scholar 

  19. Baquero DP, Liu Y, Wang F et al (2020) Structure and assembly of archaeal viruses. Adv Virus Res 108:127–164

    Article  CAS  PubMed  Google Scholar 

  20. Munson-McGee JH, Snyder JC, Young MJ (2018) Archaeal viruses from high-temperature environments. Genes 9(3):128

    Google Scholar 

  21. Demina TA, Pietilä MK, Svirskaitė J et al (2017) HCIV-1 and other tailless icosahedral internal membrane-containing viruses of the family Sphaerolipoviridae. Viruses 9(2):32

    Google Scholar 

  22. Aulitto M, Martinez-Alvarez L, Fusco S et al (2022) Genomics, transcriptomics, and proteomics of SSV1 and related fusellovirus: a minireview. Viruses 14(10):2082

    Google Scholar 

  23. Luk AW, Williams TJ, Erdmann S et al (2014) Viruses of haloarchaea. Life (Basel) 4:681–715

    PubMed  Google Scholar 

  24. Kim JG, Kim SJ, Cvirkaite-Krupovic V et al (2019) Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc Natl Acad Sci U S A 116:15645–15650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weidenbach K, Nickel L, Neve H et al (2017) Methanosarcina spherical virus, a novel archaeal lytic virus targeting methanosarcina strains. J Virol 91:e00955-17

    Google Scholar 

  26. Medvedeva S, Sun J, Yutin N et al (2022) Three families of Asgard archaeal viruses identified in metagenome-assembled genomes. Nat Microbiol 7:962–973

    Article  CAS  PubMed  Google Scholar 

  27. Rambo IM, Langwig MV, Leão P et al (2022) Genomes of six viruses that infect Asgard archaea from deep-sea sediments. Nat Microbiol 7:953–961

    Article  CAS  PubMed  Google Scholar 

  28. Tamarit D, Caceres EF, Krupovic M et al (2022) A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses. Nat Microbiol 7:948–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu F, Speth DR, Philosof A et al (2022) Unique mobile elements and scalable gene flow at the prokaryote-eukaryote boundary revealed by circularized Asgard archaea genomes. Nat Microbiol 7:200–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laso-Pérez R, Wu F, Crémière A et al (2023) Evolutionary diversification of methanotrophic Ca. Methanophagales (ANME-1) and their expansive virome. Nat Microbiol 8:231–245

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li R, Wang Y, Hu H et al (2022) Metagenomic analysis reveals unexplored diversity of archaeal virome in the human gut. Nat Commun 13:7978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ngo VQH, Enault F, Midoux C et al (2022) Diversity of novel archaeal viruses infecting methanogens discovered through coupling of stable isotope probing and metagenomics. Environ Microbiol 24:4853–4868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Medvedeva S, Borrel G, Krupovic M et al (2023) A compendium of viruses from methanogenic archaea reveals their diversity and adaptations to the gut environment. Nat Microbiol doi: 10.1038/s41564-023-01485-w

    Google Scholar 

  34. Zhou Y, Zhou L, Yan S et al (2023) Diverse viruses of marine archaea discovered using metagenomics. Environ Microbiol 25:367–382

    Article  CAS  PubMed  Google Scholar 

  35. Philosof A, Yutin N, Flores-Uribe J et al (2017) Novel abundant oceanic viruses of uncultured marine group II euryarchaeota. Curr Biol 27:1362–1368

    Google Scholar 

  36. Nishimura Y, Watai H, Honda T et al (2017) Environmental viral genomes shed new light on virus-host interactions in the ocean. mSphere 2:e00359–16

    Google Scholar 

  37. López-Pérez M, Haro-Moreno JM, de la Torre JR et al (2019) Novel Caudovirales associated with Marine Group I Thaumarchaeota assembled from metagenomes. Environ Microbiol 21:1980–1988

    Article  PubMed  Google Scholar 

  38. Ahlgren NA, Fuchsman CA, Rocap G et al (2019) Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. ISME J 13:618–631

    Article  CAS  PubMed  Google Scholar 

  39. Roux S, Brum JR, Dutilh BE et al (2016) Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537:689–693

    Article  CAS  PubMed  Google Scholar 

  40. Rahlff J, Turzynski V, Esser SP et al (2021) Lytic archaeal viruses infect abundant primary producers in Earth’s crust. Nat Commun 12:4642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen S, Zhou Y, Chen Y et al (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li D, Liu CM, Luo R et al (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676

    Article  CAS  PubMed  Google Scholar 

  44. Nurk S, Meleshko D, Korobeynikov A et al (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  PubMed  PubMed Central  Google Scholar 

  46. Guo J, Bolduc B, Zayed AA et al (2021) VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9:37

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kieft K, Zhou Z, Anantharaman K (2020) VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ren J, Song K, Deng C et al (2020) Identifying viruses from metagenomic data using deep learning. Quant Biol 8:64–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tisza MJ, Belford AK, Domínguez-Huerta G et al (2021) Cenote-Taker 2 democratizes virus discovery and sequence annotation. Virus Evol 7:veaa100

    Article  PubMed  Google Scholar 

  50. Deng Z, Delwart E (2021) ContigExtender: a new approach to improving de novo sequence assembly for viral metagenomics data. BMC Bioinformatics 22:119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nayfach S, Camargo AP, Schulz F et al (2021) CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol 39:578–585

    Article  CAS  PubMed  Google Scholar 

  52. Couvin D, Bernheim A, Toffano-Nioche C et al (2018) CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 46:W246–W251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Biswas A, Staals RH, Morales SE et al (2016) CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genomics 17:356

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fu L, Niu B, Zhu Z et al (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chan Patricia P, Lin Brian Y, Mak Allysia J et al (2021) tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res 49:9077–9096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lu S, Wang J, Chitsaz F et al (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48:D265–d268

    Article  CAS  PubMed  Google Scholar 

  57. Cantalapiedra CP, Hernández-Plaza A, Letunic I et al (2021) eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 38:5825–5829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huerta-Cepas J, Szklarczyk D, Heller D et al (2019) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314

    Article  CAS  PubMed  Google Scholar 

  59. Shaffer M, Borton MA, McGivern BB et al (2020) DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res 48:8883–8900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shang J, Sun Y (2021) Predicting the hosts of prokaryotic viruses using GCN-based semi-supervised learning. BMC Biol 19:250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vik D, Bolduc B, Roux S et al (2023) MArVD2: a machine learning enhanced tool to discriminate between archaeal and bacterial viruses in viral datasets. ISME Commun 3(1):87

    Google Scholar 

  62. Galiez C, Siebert M, Enault F et al (2017) WIsH: who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics 33:3113–3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou F, Gan R, Zhang F et al (2022) PHISDetector: a tool to detect diverse in silico phage-host interaction signals for virome studies. Genomics Proteomics Bioinformatics 20:508–523

    Google Scholar 

  64. Coutinho FH, Zaragoza-Solas A, López-Pérez M et al (2021) RaFAH: Host prediction for viruses of bacteria and archaea based on protein content. Patterns 2:100274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bouras G, Nepal R, Houtak G et al (2023) Pharokka: a fast scalable bacteriophage annotation tool. Bioinformatics 39:btac776

    Google Scholar 

  66. Steinegger M, Meier M, Mirdita M et al (2019) HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics 20:473

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lopes A, Tavares P, Petit MA et al (2014) Automated classification of tailed bacteriophages according to their neck organization. BMC Genomics 15:1027

    Article  PubMed  PubMed Central  Google Scholar 

  68. Di Tommaso P, Moretti S, Xenarios I et al (2011) T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39:W13–W17

    Article  PubMed  PubMed Central  Google Scholar 

  69. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pei J, Kim BH, Grishin NV (2008) PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 36:2295–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973

    Article  PubMed  PubMed Central  Google Scholar 

  72. Guindon S, Dufayard JF, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  73. Price MN, Dehal PS, Arkin AP (2010) FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490

    Article  PubMed  PubMed Central  Google Scholar 

  74. Nguyen LT, Schmidt HA, von Haeseler A et al (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  75. Letunic I, Bork P (2021) Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Subramanian B, Gao S, Lercher MJ et al (2019) Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res 47:W270–W275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bin Jang H, Bolduc B, Zablocki O et al (2019) Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol 37:632–639

    Article  PubMed  Google Scholar 

  78. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gilchrist CLM, Chooi YH (2021) Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 37(16):2473–2475

    Article  CAS  PubMed  Google Scholar 

  80. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nishimura Y, Yoshida T, Kuronishi M et al (2017) ViPTree: the viral proteomic tree server. Bioinformatics 33:2379–2380

    Article  CAS  PubMed  Google Scholar 

  82. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Belilla J, Moreira D, Jardillier L et al (2019) Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area. Nat Ecol Evol 3:1552–1561

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xie W, Luo H, Murugapiran SK et al (2018) Localized high abundance of Marine Group II archaea in the subtropical Pearl River Estuary: implications for their niche adaptation. Environ Microbiol 20:734–754

    Article  CAS  PubMed  Google Scholar 

  85. Inskeep WP, Rusch DB, Jay ZJ et al (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 5:e9773

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kambourova M, Tomova I, Boyadzhieva I et al (2016) Unusually high archaeal diversity in a crystallizer pond, pomorie salterns, Bulgaria, revealed by phylogenetic analysis. Archaea 2016:7459679

    Article  PubMed  PubMed Central  Google Scholar 

  87. Oren A (2020) The microbiology of red brines. Adv Appl Microbiol 113:57–110

    Article  CAS  PubMed  Google Scholar 

  88. Hurwitz BL, Deng L, Poulos BT et al (2013) Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics. Environ Microbiol 15:1428–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. John SG, Mendez CB, Deng L et al (2011) A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ Microbiol Rep 3:195–202

    Article  CAS  PubMed  Google Scholar 

  90. Santos F, Yarza P, Parro V et al (2010) The metavirome of a hypersaline environment. Environ Microbiol 12:2965–2976

    Article  CAS  PubMed  Google Scholar 

  91. Thurber RV, Haynes M, Breitbart M et al (2009) Laboratory procedures to generate viral metagenomes. Nat Protoc 4:470–483

    Article  CAS  PubMed  Google Scholar 

  92. Zablocki O, van Zyl LJ, Kirby B et al (2017) Diversity of dsDNA viruses in a South African hot spring assessed by metagenomics and microscopy. Viruses 9(11):348

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wu S, Zhou L, Zhou Y et al (2020) Diverse and unique viruses discovered in the surface water of the East China Sea. BMC Genomics 21:441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Koonin EV, Krupovic M, Agol VI (2021) The Baltimore classification of viruses 50 years later: how does it stand in the light of virus evolution? Microbiol Mol Biol Rev 85:e0005321

    Article  PubMed  Google Scholar 

  95. Liu Y, Brandt D, Ishino S et al (2019) New archaeal viruses discovered by metagenomic analysis of viral communities in enrichment cultures. Environ Microbiol 21:2002–2014

    Article  PubMed  Google Scholar 

  96. Adriaenssens EM, van Zyl LJ, Cowan DA et al (2016) Metaviromics of Namib Desert salt pans: a novel lineage of haloarchaeal salterproviruses and a rich source of ssDNA viruses. Viruses 8(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  97. Schoenfeld T, Patterson M, Richardson PM et al (2008) Assembly of viral metagenomes from yellowstone hot springs. Appl Environ Microbiol 74:4164–4174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Poulos BT, John SG, Sullivan MB (2018) Iron chloride flocculation of bacteriophages from seawater. Methods Mol Biol 1681:49–57

    Article  CAS  PubMed  Google Scholar 

  99. Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13:278–289

    Article  PubMed  PubMed Central  Google Scholar 

  100. Chiang YN, Penadés JR, Chen J (2019) Genetic transduction by phages and chromosomal islands: the new and noncanonical. PLoS Pathog 15:e1007878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu J, Soler N, Gorlas A et al (2021) Extracellular membrane vesicles and nanotubes in Archaea. Microlife 2:uqab007

    Article  PubMed  PubMed Central  Google Scholar 

  102. Gaudin M, Krupovic M, Marguet E et al (2014) Extracellular membrane vesicles harbouring viral genomes. Environ Microbiol 16:1167–1175

    Article  CAS  PubMed  Google Scholar 

  103. Choi DH, Kwon YM, Chiura HX et al (2015) Extracellular vesicles of the hyperthermophilic archaeon “thermococcus onnurineus” NA1T. Appl Environ Microbiol 81:4591–4599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Liu J, Cvirkaite-Krupovic V, Commere PH et al (2021) Archaeal extracellular vesicles are produced in an ESCRT-dependent manner and promote gene transfer and nutrient cycling in extreme environments. ISME J 15:2892–2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Simpson JT, Pop M (2015) The theory and practice of genome sequence assembly. Annu Rev Genomics Hum Genet 16:153–172

    Article  CAS  PubMed  Google Scholar 

  106. Li Z, Chen Y, Mu D et al (2012) Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph. Brief Funct Genomics 11:25–37

    Article  PubMed  Google Scholar 

  107. Simmonds P, Adams MJ, Benko M et al (2017) Consensus statement: virus taxonomy in the age of metagenomics. Nat Rev Microbiol 15:161–168

    Article  CAS  PubMed  Google Scholar 

  108. Makarova KS, Wolf YI, Iranzo J et al (2020) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83

    Article  CAS  PubMed  Google Scholar 

  109. Baquero DP, Contursi P, Piochi M et al (2020) New virus isolates from Italian hydrothermal environments underscore the biogeographic pattern in archaeal virus communities. ISME J 14:1821–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sencilo A, Jacobs-Sera D, Russell DA et al (2013) Snapshot of haloarchaeal tailed virus genomes. RNA Biol 10:803–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Krupovic M, Forterre P, Bamford DH (2010) Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria. J Mol Biol 397:144–160

    Article  CAS  PubMed  Google Scholar 

  112. Held NL, Whitaker RJ (2009) Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environ Microbiol 11:457–466

    Article  CAS  PubMed  Google Scholar 

  113. Medvedeva S, Brandt D, Cvirkaite-Krupovic V et al (2021) New insights into the diversity and evolution of the archaeal mobilome from three complete genomes of Saccharolobus shibatae. Environ Microbiol 23:4612–4630

    Article  CAS  PubMed  Google Scholar 

  114. Krupovic M, Makarova KS, Wolf YI et al (2019) Integrated mobile genetic elements in Thaumarchaeota. Environ Microbiol 21:2056–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Krupovic M, Bamford DH (2008) Archaeal proviruses TKV4 and MVV extend the PRD1-adenovirus lineage to the phylum Euryarchaeota. Virology 375:292–300

    Google Scholar 

  116. Wang J, Liu Y, Liu Y et al (2018) A novel family of tyrosine integrases encoded by the temperate pleolipovirus SNJ2. Nucleic Acids Res 46:2521–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Badel C, Da Cunha V, Oberto J (2021) Archaeal tyrosine recombinases. FEMS Microbiol Rev 45:fuab004

    Google Scholar 

  118. Mizuno CM, Rodriguez-Valera F, Kimes NE et al (2013) Expanding the marine virosphere using metagenomics. PLoS Genet 9:e1003987

    Article  PubMed  PubMed Central  Google Scholar 

  119. Koonin EV, Dolja VV, Krupovic M et al (2021) Viruses defined by the position of the virosphere within the replicator space. Microbiol Mol Biol Rev 85:e0019320

    Article  PubMed  Google Scholar 

  120. Krupovic M, Koonin EV (2017) Multiple origins of viral capsid proteins from cellular ancestors. Proc Natl Acad Sci U S A 114:E2401–e2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhou J, Zhang W, Yan S et al (2013) Diversity of virophages in metagenomic data sets. J Virol 87:4225–4236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Iranzo J, Koonin EV, Prangishvili D et al (2016) Bipartite network analysis of the archaeal virosphere: evolutionary connections between viruses and capsidless mobile elements. J Virol 90:11043–11055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Patel A, Noble RT, Steele JA et al (2007) Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR green I. Nat Protoc 2:269–276

    Article  CAS  PubMed  Google Scholar 

  124. Antón J, Llobet-Brossa E, Rodríguez-Valera F et al (1999) Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523

    Article  PubMed  Google Scholar 

  125. Rachel TN, Jed AF (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118

    Article  Google Scholar 

  126. Allander T, Emerson SU, Engle RE et al (2001) A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. Proc Natl Acad Sci U S A 98:11609–11614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Roux S, Adriaenssens EM, Dutilh BE et al (2019) Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat Biotechnol 37:29–37

    Article  CAS  PubMed  Google Scholar 

  128. Dutilh BE, Varsani A, Tong Y et al (2021) Perspective on taxonomic classification of uncultivated viruses. Curr Opin Virol 51:207–215

    Article  CAS  PubMed  Google Scholar 

  129. Biswas A, Gagnon JN, Brouns SJ et al (2013) CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol 10:817–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Edwards RA, McNair K, Faust K et al (2016) Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol Rev 40:258–272

    Article  CAS  PubMed  Google Scholar 

  131. Medvedeva S, Liu Y, Koonin EV et al (2019) Virus-borne mini-CRISPR arrays are involved in interviral conflicts. Nat Commun 10:5204

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

YW was supported by the National Natural Science Foundation of China (41376135, 31570112, and 41876195). The preparation of this chapter was supported by the Emergence(s) project MEMREMA from Ville de Paris to MK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mart Krupovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhou, Y., Wang, Y., Prangishvili, D., Krupovic, M. (2024). Exploring the Archaeal Virosphere by Metagenomics. In: Pantaleo, V., Miozzi, L. (eds) Viral Metagenomics. Methods in Molecular Biology, vol 2732. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3515-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3515-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3514-8

  • Online ISBN: 978-1-0716-3515-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics