Skip to main content

Peptide-Mediated Cyclic Nucleotide Signaling in Plants: Identification and Characterization of Interactor Proteins with Nucleotide Cyclase Activity

  • Protocol
  • First Online:
Plant Peptide Hormones and Growth Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2731))

  • 415 Accesses

Abstract

During the last decades, an increasing number of plant signaling peptides have been discovered and it appears that many of them are specific ligands for interacting receptor molecules. These receptors can enable the formation of second messengers which in turn transmit the ligand-induced stimuli into complex and tunable downstream responses. In order to perform such complex tasks, receptor proteins often contain several distinct domains such as a kinase and/or adenylate cyclase (AC) or guanylate cyclase (GC) domains. ACs catalyze the conversion of ATP to 3′,5′-cyclic adenosine monophosphate (cAMP) while GCs catalyze the reaction of GTP to 3′,5′-cyclic guanosine monophosphate (cGMP). Both cAMP and cGMP are now recognized as essential components of many plant responses, including responses to peptidic hormones. Here we describe the approach that led to the discovery of the Plant Natriuretic Peptide Receptor (PNP receptor), including a protocol for the identification of currently undiscovered peptidic interactions, and the subsequent application of computational methods for the identification of AC and/or GC domains in such interacting receptor candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qi Z, Verma R, Gehring C, Yamaguchi Y, Zhao Y, Ryan CA, Berkowitz GA (2010) Ca2+ signaling by plant Arabidopsis thaliana pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc Natl Acad Sci U S A 107(49):21193–21198. https://doi.org/10.1073/pnas.1000191107

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wheeler JI, Irving HR (2010) Evolutionary advantages of secreted peptide signalling. Funct Plant Biol 37:382–394

    Article  CAS  Google Scholar 

  3. Matsubayashi Y (2014) Posttranslationally modified small-peptide signals in plants. Annu Rev Plant Biol 65:385–413. https://doi.org/10.1146/annurev-arplant-050312-120122

    Article  CAS  PubMed  Google Scholar 

  4. Turek I, Gehring C (2016) The plant natriuretic peptide receptor is a guanylyl cyclase and enables cGMP-dependent signaling. Plant Mol Biol 91(3):275–286. https://doi.org/10.1007/s11103-016-0465-8

    Article  CAS  PubMed  Google Scholar 

  5. Hirakawa Y, Torii KU, Uchida N (2017) Mechanisms and strategies shaping plant peptide hormones. Plant Cell Physiol 58(8):1313–1318. https://doi.org/10.1093/pcp/pcx069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Turek I, Wheeler J, Bartels S, Szczurek J, Wang YH, Taylor P, Gehring C, Irving H (2020) A natriuretic peptide from Arabidopsis thaliana (AtPNP-A) can modulate catalase 2 activity. Sci Rep 10(1):19632. https://doi.org/10.1038/s41598-020-76676-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kwezi L, Ruzvidzo O, Wheeler JI, Govender K, Iacuone S, Thompson PE, Gehring C, Irving HR (2011) The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants. J Biol Chem 286(25):22580–22588. https://doi.org/10.1074/jbc.M110.168823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gehring C, Turek IS (2017) Cyclic nucleotide monophosphates and their cyclases in plant signaling. Front Plant Sci 8:1704. https://doi.org/10.3389/fpls.2017.01704

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wheeler JI, Wong A, Marondedze C, Groen AJ, Kwezi L, Freihat L, Vyas J, Raji MA, Irving HR, Gehring C (2017) The brassinosteroid receptor BRI1 can generate cGMP enabling cGMP-dependent downstream signaling. Plant J 91(4):590–600. https://doi.org/10.1111/tpj.13589

    Article  CAS  PubMed  Google Scholar 

  10. Kwezi L, Wheeler JI, Marondedze C, Gehring C, Irving HR (2018) Intramolecular crosstalk between catalytic activities of receptor kinases. Plant Signal Behav 13(2):e1430544. https://doi.org/10.1080/15592324.2018.1430544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Muleya V, Marondedze C, Wheeler JI, Thomas L, Mok YF, Griffin MD, Manallack DT, Kwezi L, Lilley KS, Gehring C, Irving HR (2016) Phosphorylation of the dimeric cytoplasmic domain of the phytosulfokine receptor, PSKR1. Biochem J 473(19):3081–3098. https://doi.org/10.1042/BCJ20160593

    Article  CAS  PubMed  Google Scholar 

  12. Donaldson L, Meier S, Gehring C (2016) The Arabidopsis cyclic nucleotide interactome. Cell Commun Signal 14(1):10. https://doi.org/10.1186/s12964-016-0133-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pasqualini S, Meier S, Gehring C, Madeo L, Fornaciari M, Romano B, Ederli L (2009) Ozone and nitric oxide induce cGMP-dependent and -independent transcription of defence genes in tobacco. New Phytol 181(4):860–870. https://doi.org/10.1111/j.1469-8137.2008.02711.x

    Article  PubMed  Google Scholar 

  14. Ludidi N, Gehring C (2003) Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J Biol Chem 278(8):6490–6494. https://doi.org/10.1074/jbc.M210983200

    Article  CAS  PubMed  Google Scholar 

  15. Gehring C (2010) Adenyl cyclases and cAMP in plant signaling - past and present. Cell Commun Signal 8:15. https://doi.org/10.1186/1478-811X-8-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Al-Younis I, Wong A, Lemtiri-Chlieh F, Schmockel S, Tester M, Gehring C, Donaldson L (2018) The Arabidopsis thaliana K+-uptake permease 5 (AtKUP5) contains a functional cytosolic adenylate cyclase essential for K+ transport. Front Plant Sci 9:1645. https://doi.org/10.3389/fpls.2018.01645

    Article  PubMed  PubMed Central  Google Scholar 

  17. Al-Younis I, Moosa B, Kwiatkowski M, Jaworski K, Wong A, Gehring C (2021) Functional crypto-adenylate cyclases operate in complex plant proteins. Front Plant Sci 12:711749. https://doi.org/10.3389/fpls.2021.711749

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wong A, Tian X, Gehring C, Marondedze C (2018) Discovery of novel functional centers with rationally designed amino acid motifs. Comput Struct Biotechnol J 16:70–76. https://doi.org/10.1016/j.csbj.2018.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gottig N, Garavaglia BS, Daurelio LD, Valentine A, Gehring C, Orellano EG, Ottado J (2008) Xanthomonas axonopodis pv. citri uses a plant natriuretic peptide-like protein to modify host homeostasis. Proc Natl Acad Sci U S A 105(47):18631–18636. https://doi.org/10.1073/pnas.0810107105

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang YH, Gehring C, Irving HR (2011) Plant natriuretic peptides are apoplastic and paracrine stress response molecules. Plant Cell Physiol 52(5):837–850. https://doi.org/10.1093/pcp/pcr036

    Article  CAS  PubMed  Google Scholar 

  21. Laemmli UK (1970) Cleavage of structural proteins during the assemby of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  22. Zhou W, Chi W, Shen W, Dou W, Wang J, Tian X, Gehring C, Wong A (2021) Computational identification of functional centers in complex proteins: a step-by-step guide with examples. Frontiers. Bioinformatics 1. https://doi.org/10.3389/fbinf.2021.652286

  23. Wong A, Gehring C (2013) The Arabidopsis thaliana proteome harbors undiscovered multi-domain molecules with functional guanylyl cyclase catalytic centers. Cell Commun Signal 11(48). https://doi.org/10.1186/1478-811X-11-48

  24. Xu N, Fu D, Li S, Wang Y, Wong A (2018) GCPred: a web tool for guanylyl cyclase functional Centre prediction from amino acid sequence. Bioinformatics 34(12):2134–2135. https://doi.org/10.1093/bioinformatics/bty067

    Article  CAS  PubMed  Google Scholar 

  25. Morse M, Pironcheva G, Gehring C (2004) AtPNP-A is a systemically mobile natriuretic peptide immunoanalogue with a role in Arabidopsis thaliana cell volume regulation. FEBS Lett 556(1–3):99–103. https://doi.org/10.1016/s0014-5793(03)01384-x

    Article  CAS  PubMed  Google Scholar 

  26. Kwezi L, Meier S, Mungur L, Ruzvidzo O, Irving H, Gehring C (2007) The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PLoS One 2(5):e449. https://doi.org/10.1371/journal.pone.0000449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74(20):5383–5393

    Article  CAS  PubMed  Google Scholar 

  28. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75(17):4646–4658

    Article  CAS  PubMed  Google Scholar 

  29. Domingo-Almenara X, Montenegro-Burke JR, Ivanisevic J, Thomas A, Sidibe J, Teav T, Guijas C, Aisporna AE, Rinehart D, Hoang L, Nordstrom A, Gomez-Romero M, Whiley L, Lewis MR, Nicholson JK, Benton HP, Siuzdak G (2018) XCMS-MRM and METLIN-MRM: a cloud library and public resource for targeted analysis of small molecules. Nat Methods 15(9):681–684. https://doi.org/10.1038/s41592-018-0110-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Adams KJ, Pratt B, Bose N, Dubois LG, St John-Williams L, Perrott KM, Ky K, Kapahi P, Sharma V, MacCoss MJ, Moseley MA, Colton CA, MacLean BX, Schilling B, Thompson JW, Alzheimer's Disease Metabolomics C (2020) Skyline for small molecules: a unifying software package for quantitative metabolomics. J Proteome Res 19(4):1447–1458. https://doi.org/10.1021/acs.jproteome.9b00640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the KAUST Analytical and Bioscience Core Laboratories for supporting this project. I.T. was supported by a scholarship from King Abdullah University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilona Turek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Turek, I., Gehring, C. (2024). Peptide-Mediated Cyclic Nucleotide Signaling in Plants: Identification and Characterization of Interactor Proteins with Nucleotide Cyclase Activity. In: Schaller, A. (eds) Plant Peptide Hormones and Growth Factors. Methods in Molecular Biology, vol 2731. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3511-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3511-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3510-0

  • Online ISBN: 978-1-0716-3511-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics