Skip to main content

Affinity Purification of Intraflagellar Transport (IFT) Proteins in Mice Using Endogenous Streptavidin/FLAG Tags

  • Protocol
  • First Online:
Cilia

Abstract

Biological complexity is achieved through elaborate interactions between relatively few individual components. Affinity purification (AP) has allowed these networks of protein-protein interactions that regulate key biological processes to be interrogated systematically. In order to perform these studies at the required scale, easily transfectable immortalized cell lines have typically been used. Gene-editing now affords the systematic creation of isogenic mouse models carrying endogenous tags for affinity proteomics. This may allow protein-protein interactions to be characterized in the appropriate tissue for a particular biological process or disease phenotype under physiological conditions, and for interaction landscapes to be compared across tissues. Here we demonstrate application to intraflagellar transport (IFT) proteins, which are WD40-domain-containing proteins that are essential for the formation and function of all types of cilia. We describe a method to generate mice with an endogenous C-terminal streptavidin/FLAG tag, using Ift80 as an example, and demonstrate the successful implementation of AP in this model. This method can easily be adapted for N- and C-terminal tagging of many other proteins in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang F, Wen Y, Guo X (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23(R1):R40–R46. https://doi.org/10.1093/hmg/ddu125

    Article  CAS  PubMed  Google Scholar 

  2. Maeder ML, Gersbach CA (2016) Genome editing technologies for gene and cell therapy. Mol Ther 24(3):430–446. https://doi.org/10.1038/mt.2016.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533(7601):125–129. https://doi.org/10.1038/nature17664

    Article  CAS  PubMed  Google Scholar 

  7. Li Y (2011) The tandem affinity purification technology: an overview. Biotechnol Lett 33(8):1487–1499. https://doi.org/10.1007/s10529-011-0592-x

    Article  CAS  PubMed  Google Scholar 

  8. Boldt K, van Reeuwijk J, Lu Q, Koutroumpas K, Nguyen TM, Texier Y, van Beersum SE, Horn N, Willer JR, Mans DA, Dougherty G, Lamers IJ, Coene KL, Arts HH, Betts MJ, Beyer T, Bolat E, Gloeckner CJ, Haidari K, Hetterschijt L, Iaconis D, Jenkins D, Klose F, Knapp B, Latour B, Letteboer SJ, Marcelis CL, Mitic D, Morleo M, Oud MM, Riemersma M, Rix S, Terhal PA, Toedt G, van Dam TJ, de Vrieze E, Wissinger Y, Wu KM, Apic G, Beales PL, Blacque OE, Gibson TJ, Huynen MA, Katsanis N, Kremer H, Omran H, van Wijk E, Wolfrum U, Kepes F, Davis EE, Franco B, Giles RH, Ueffing M, Russell RB, Roepman R, UK10K Rare Diseases Group (2016) An organelle-specific protein landscape identifies novel diseases and molecular mechanisms. Nat Commun 7:11491. https://doi.org/10.1038/ncomms11491. PMID: 27173435; PMCID: PMC4869170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beyer T, Bolz S, Junger K, Horn N, Moniruzzaman M, Wissinger Y, Ueffing M, Boldt K (2018) CRISPR/Cas9-mediated genomic editing of Cluap1/IFT38 reveals a new role in actin arrangement. Mol Cell Proteomics 17:1285–1294. https://doi.org/10.1074/mcp.RA117.000487. PMID: 29615496 PMCID: PMC6030719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gibson TJ, Seiler M, Veitia RA (2013) The transience of transient overexpression. Nat Methods 10:715–721. https://doi.org/10.1038/nmeth.2534. PMID: 23900254

    Article  CAS  PubMed  Google Scholar 

  11. Klena N, Pigino G (2022) Structural biology of cilia and intraflagellar transport. Annu Rev Cell Dev Biol 38:103–123. https://doi.org/10.1146/annurev-cellbio-120219-034238

    Article  CAS  PubMed  Google Scholar 

  12. Taschner M, Lorentzen E (2016) The intraflagellar transport machinery. Cold Spring Harb Perspect Biol 8(10):a028092. https://doi.org/10.1101/cshperspect.a028092. PMID: 27352625; PMCID: PMC5046692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jain BP, Pandey S (2018) WD40 repeat proteins: Signalling scaffold with diverse functions. Protein J 37(5):391–406. https://doi.org/10.1007/s10930-018-9785-7. PMID: 30069656

    Article  CAS  PubMed  Google Scholar 

  14. Seruggia D, Fernández A, Cantero M, Pelczar P, Montoliu L (2015) Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis. Nucleic Acids Res 43(10):4855–4867. https://doi.org/10.1093/nar/gkv375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu C, Xie W, Gui C, Du Y (2013) Pronuclear microinjection and oviduct transfer procedures for transgenic mouse production. Methods Mol Biol. https://doi.org/10.1007/978-1-60327-369-5_10

  16. Gloeckner CJ, Boldt K, Ueffing M (2009) Strep/FLAG tandem affinity purification (SF-TAP) to study protein interactions. Curr Protoc Protein Sci Chapter 19:19.20.1–19.20.19. https://doi.org/10.1002/0471140864.ps1920s57. PMID: 19688738

    Article  Google Scholar 

  17. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511. PMID: 19029910

    Article  CAS  PubMed  Google Scholar 

  18. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 12:2301–2319. https://doi.org/10.1038/nprot.2016.136. PMID: 27809316

    Article  CAS  Google Scholar 

  19. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 9:731–740. https://doi.org/10.1038/nmeth.3901. PMID: 27348712

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a Wellcome Trust Collaborative Award in Science (210585/Z/18/Z) to DJ, PLB, MU, and KB. This research was also supported by the National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagan Jenkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Beyer, T. et al. (2024). Affinity Purification of Intraflagellar Transport (IFT) Proteins in Mice Using Endogenous Streptavidin/FLAG Tags. In: Mennella, V. (eds) Cilia. Methods in Molecular Biology, vol 2725. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3507-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3507-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3506-3

  • Online ISBN: 978-1-0716-3507-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics