Skip to main content

Combination of CRISPR-Cas9-RNP and Single-Cell RNAseq to Identify Cell State-Specific FOXJ1 Functions in the Human Airway Epithelium

  • Protocol
  • First Online:
Cilia

Abstract

The study of the airway epithelium in vitro is routinely performed using air-liquid culture (ALI) models from nasal or bronchial basal cells. These 3D experimental models allow to follow the regeneration steps of fully differentiated mucociliary epithelium and to study gene function by performing gene invalidation. Recent progress made with CRISPR-based techniques has overcome the experimental difficulty of this approach, by a direct transfection of ribonucleoprotein complexes combining a mix of synthetic small guide RNAs (sgRNAs) and recombinant Cas9. The approach shows more than 95% efficiency and does not require any selection step. A limitation of this approach is that it generates cell populations that contain heterogeneous deletions, which makes the evaluation of invalidation efficiency difficult. We have successfully used Flongle sequencing (Nanopore) to quantify the number of distinct deletions. We describe the use of CRISPR-Cas9 RNP in combination with single-cell RNA sequencing to functionally characterize the impact of gene invalidation in ALI cultures. The complex ecosystem of the airway epithelium, composed of many cell types, makes single-cell approaches particularly relevant to study cell type, or cell state-specific events. This protocol describes the invalidation of FOXJ1 in ALI cultures through the following steps: (1) Establishment of basal cell cultures from nasal turbinates, (2) CRISPR-Cas9 RNP invalidation of FOXJ1, (3) Quantification of FOXJ1 invalidation efficiency by Nanopore sequencing, (4) Dissociation of ALI cultures and single-cell RNAseq, (5) Analysis of single-cell RNAseq data from FOXJ1-invalidated cells.

We confirm here that FOXJ1 invalidation impairs the final differentiation step of multiciliated cells and provides a framework to explore other gene functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kotton DN, Morrisey EE (2014) Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med 20:822–832. https://doi.org/10.1038/nm.3642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Deprez M, Zaragosi L-E, Truchi M et al (2020) A single-cell atlas of the human healthy airways. Am J Respir Crit Care Med 202:1636–1645. https://doi.org/10.1164/rccm.201911-2199OC

    Article  CAS  PubMed  Google Scholar 

  3. Pezzulo AA, Starner TDT, Scheetz TET et al (2011) The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. Am J Physiol Lung Cell Mol Physiol 300:L25–L31. https://doi.org/10.1152/ajplung.00256.2010

    Article  CAS  PubMed  Google Scholar 

  4. Gras D, Bourdin A, Vachier I et al (2012) An ex vivo model of severe asthma using reconstituted human bronchial epithelium. J allergy Clin Immunol 129:1259-1266.e1. https://doi.org/10.1016/j.jaci.2012.01.073

  5. Ruiz Garcia S, Deprez M, Lebrigand K et al (2019) Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures Development:177428. https://doi.org/10.1242/dev.177428

  6. Recordon-pinson P, Esteves P, Faure M (2022) Bronchial epithelia from adults and children : SARS-CoV-2 spread via syncytia formation and type III interferon infectivity restriction. 1–12. https://doi.org/10.1073/pnas.2202370119/-/DCSupplemental.Published

  7. Mulay A, Konda B, Garcia G et al (2021) SARS-CoV-2 infection of primary human lung epithelium for COVID-19 modeling and drug discovery. Cell Rep 35:109055. https://doi.org/10.1016/j.celrep.2021.109055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Everman JL, Rios C, Seibold MA (2018) Primary airway epithelial cell gene editing using CRISPR-Cas9. Methods Mol Biol 1706:267–292. https://doi.org/10.1007/978-1-4939-7471-9_15

    Article  CAS  PubMed  Google Scholar 

  9. Koh KD, Siddiqui S, Cheng D et al (2020) Efficient RNP-directed human gene targeting reveals SPDEF is required for IL-13-induced mucostasis. Am J Respir Cell Mol Biol 62:373–381. https://doi.org/10.1165/rcmb.2019-0266OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Satija R, Farrell JA, Gennert D et al (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33:495–502. https://doi.org/10.1038/nbt.3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Butler A, Hoffman P, Smibert P et al (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420. https://doi.org/10.1038/nbt.4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lun ATL, Riesenfeld S, Andrews T et al (2019) EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol 20:1–9. https://doi.org/10.1186/s13059-019-1662-y

    Article  Google Scholar 

  13. Islam S, Zeisel A, Joost S et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11:163–166. https://doi.org/10.1038/nmeth.2772

    Article  CAS  PubMed  Google Scholar 

  14. Stoeckius M, Zheng S, Houck-Loomis B et al (2018) Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol 19:224. https://doi.org/10.1186/s13059-018-1603-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the UCAGenomiX platform for fruitful discussions and technical help on single-cell RNA sequencing. Supported by grants from Fondation pour la Recherche Médicale (DEQ20180339158), 020, INSERM (Human Developmental Cell Atlas program), the association Vaincre la Mucoviscidose (RF20180502280), the Chan Zuckerberg Initiative (Silicon Valley Foundation, 2017-175159-5022), ANR SAHARRA (ANR-19-CE14–0027), and H2020-SC1-BHC-2018-2020 DiscovAIR (grant agreement 874656). The UCAGenomiX platform, a partner of the National Infrastructure France Génomique, is supported by Commissariat aux Grands Investissements (ANR-10-INBS-09-03, ANR-10-INBS-09-02), Conseil Départemental des Alpes Maritimes (2016-294DGADSH-CV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laure-Emmanuelle Zaragosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zaragosi, LE. et al. (2024). Combination of CRISPR-Cas9-RNP and Single-Cell RNAseq to Identify Cell State-Specific FOXJ1 Functions in the Human Airway Epithelium. In: Mennella, V. (eds) Cilia. Methods in Molecular Biology, vol 2725. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3507-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3507-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3506-3

  • Online ISBN: 978-1-0716-3507-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics