Skip to main content

Rapid Radiolabeling for Peptide Radiotracers

  • Protocol
  • First Online:
Positron Emission Tomography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2729))

  • 552 Accesses

Abstract

Peptide-based radiopharmaceuticals (PRPs) have been developed and introduced into research and clinic diagnostic imaging and targeted radionuclide therapy for more than two decades. In order to efficiently prepare PRPs, some rapid radiolabeling methods have been demonstrated. This chapter presents six common approaches for PRPs radiolabeling with metallic radioisotopes and Fluorine-18.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watabe T et al (2020) Theranostics targeting fibroblast activation protein in the tumor stroma: (64)Cu- and (225)Ac-labeled FAPI-04 in pancreatic cancer xenograft mouse models. J Nucl Med 61:563–569

    Article  CAS  Google Scholar 

  2. Tshibangu T et al (2020) Automated GMP compliant production of [(18)F]AlF-NOTA-octreotide. EJNMMI Radiopharm Chem 5:4

    Article  Google Scholar 

  3. Chan K, Luong TV, Navalkissoor S (2018) 111In-DTPA-octreotide SPECT (OctreoScan) uptake in metastatic renal cell carcinoma to the pancreas. Clin Nucl Med 43:e29–e30

    Article  Google Scholar 

  4. Gai Y et al (2019) Comparison of Al18F- and 68Ga-labeled NOTA-PEG4-LLP2A for PET imaging of very late antigen-4 in melanoma. JBIC J Biol Inorg Chem 25:99–108

    Article  Google Scholar 

  5. Kratochwil C et al (2016) 225Ac-PSMA-617 for PSMA-Targeted alpha-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J Nucl Med 57:1941–1944

    Article  CAS  Google Scholar 

  6. Cardinale J et al (2020) Development of PSMA-1007-related series of (18)F-labeled glu-ureido-type PSMA inhibitors. J Med Chem 63:10897–10907

    Article  CAS  Google Scholar 

  7. Sun Y et al (2016) Preclinical study on GRPR-targeted (68)Ga-probes for PET imaging of prostate cancer. Bioconjug Chem 27:1857–1864

    Article  CAS  Google Scholar 

  8. Xia Y et al (2020) Comparative evaluation of (68)Ga-labelled TATEs: the impact of chelators on imaging. EJNMMI Res 10:36

    Article  CAS  Google Scholar 

  9. Guleria M, Das T, Amirdhanayagam J, Sarma HD, Dash A (2018) Comparative evaluation of using NOTA and DOTA derivatives as bifunctional chelating agents in the preparation of (68)Ga-labeled porphyrin: impact on pharmacokinetics and tumor uptake in a mouse model. Cancer Biother Radiopharm 33:8–16

    CAS  Google Scholar 

  10. Tsionou MI et al (2017) Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. RSC Adv 7:49586–49599

    Article  CAS  Google Scholar 

  11. Sosabowski JK, Mather SJ (2006) Conjugation of DOTA-like chelating agents to peptides and radiolabeling with trivalent metallic isotopes. Nat Protoc 1:972–976

    Article  CAS  Google Scholar 

  12. Notni J, Pohle K, Wester HJ (2012) Comparative gallium-68 labeling of TRAP-, NOTA-, and DOTA-peptides: practical consequences for the future of gallium-68-PET. EJNMMI Res 2:28

    Article  Google Scholar 

  13. Eppard E, Homann T, de la Fuente A, Essler M, Rosch F (2017) Optimization of labeling PSMA(HBED) with ethanol-postprocessed (68)Ga and its quality control systems. J Nucl Med 58:432–437

    Article  CAS  Google Scholar 

  14. Eder M et al (2012) 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem 23:688–697

    Article  CAS  Google Scholar 

  15. Ghosh SC et al (2015) Comparison of DOTA and NODAGA as chelators for 64Cu-labeled immunoconjugates. Nucl Med Biol 42:177–183

    Article  CAS  Google Scholar 

  16. De Silva RA et al (2012) Copper-64 radiolabeling and biological evaluation of bifunctional chelators for radiopharmaceutical development. Nucl Med Biol 39:1099–1104

    Article  Google Scholar 

  17. Pandya DN et al (2012) New macrobicyclic chelator for the development of ultrastable 64Cu-radiolabeled bioconjugate. Bioconjug Chem 23:330–335

    Article  CAS  Google Scholar 

  18. Wadas TJ, Anderson CJ (2006) Radiolabeling of TETA- and CB-TE2A-conjugated peptides with copper-64. Nat Protoc 1:3062–3068

    Article  CAS  Google Scholar 

  19. Bass LA, Wang M, Welch MJ, Anderson CJ (2000) In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver. Bioconjug Chem 11:527–532

    Article  CAS  Google Scholar 

  20. Guleria M, Das T, Amirdhanayagam J, Sarma HD, Dash A (2019) Preparation of [(177)Lu]Lu-DOTA-Ahx-Lys40-Exendin-4 for radiotherapy of insulinoma: a detailed insight into the radiochemical intricacies. Nucl Med Biol 78-79:31–40

    Article  CAS  Google Scholar 

  21. Liu S, Cheung E, Ziegler MC, Rajopadhye M, Edwards DS (2001) (90)Y and (177)Lu labeling of a DOTA-conjugated vitronectin receptor antagonist useful for tumor therapy. Bioconjug Chem 12:559–568

    Article  CAS  Google Scholar 

  22. Onthank DC et al (2004) 90Y and 111In complexes of a DOTA-conjugated integrin alpha v beta 3 receptor antagonist: different but biologically equivalent. Bioconjug Chem 15:235–241

    Article  CAS  Google Scholar 

  23. Brom M, Joosten L, Oyen WJ, Gotthardt M, Boerman OC (2012) Improved labelling of DTPA- and DOTA-conjugated peptides and antibodies with 111In in HEPES and MES buffer. EJNMMI Res 2:4

    Article  Google Scholar 

  24. Boubaker A et al (2012) Biokinetics and dosimetry of 111In-DOTA-NOC-ATE compared with 111In-DTPA-octreotide. Eur J Nucl Med Mol Imaging 39:1868–1875

    Article  CAS  Google Scholar 

  25. Bauman A, Valverde IE, Fischer CA, Vomstein S, Mindt TL (2015) Development of 68Ga- and 89Zr-labeled exendin-4 as potential radiotracers for the imaging of insulinomas by PET. J Nucl Med 56:1569–1574

    Article  CAS  Google Scholar 

  26. Guggenberg EV, Mikolajczak R, Janota B, Riccabona G, Decristoforo C (2004) Radiopharmaceutical development of a freeze-dried kit formulation for the preparation of [99mTc-EDDA-HYNIC-D-Phe1, Tyr3]-octreotide, a somatostatin analog for tumor diagnosis. J Pharm Sci 93:2497–2506

    Article  Google Scholar 

  27. Erfani M, Shafiei M, Mazidi M, Goudarzi M (2013) Preparation and biological evaluation of [(99m)Tc/EDDA/Tricine/HYNIC(0), BzThi(3)]-octreotide for somatostatin receptor-positive tumor imaging. Cancer Biother Radiopharm 28:240–247

    CAS  Google Scholar 

  28. Mogadam HY, Erfani M, Nikpassand M, Mokhtary M (2020) Preparation and assessment of a new radiotracer technetium-99m-6-hydrazinonicotinic acid-tyrosine as a targeting agent in tumor detecting through single photon emission tomography. Bioorg Chem 104:104181

    Article  CAS  Google Scholar 

  29. Giesel FL et al (2021) FAPI-74 PET/CT Using Either (18)F-AlF or Cold-Kit (68)Ga labeling: biodistribution, radiation dosimetry, and tumor delineation in lung cancer patients. J Nucl Med 62:201–207

    Article  CAS  Google Scholar 

  30. Wangler C et al (2010) One-step (1)(8)F-labeling of carbohydrate-conjugated octreotate-derivatives containing a silicon-fluoride-acceptor (SiFA): in vitro and in vivo evaluation as tumor imaging agents for positron emission tomography (PET). Bioconjug Chem 21:2289–2296

    Article  Google Scholar 

  31. Lindner S et al (2020) Radiosynthesis of [(18)F]SiFAlin-TATE for clinical neuroendocrine tumor positron emission tomography. Nat Protoc 15:3827–3843

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ma, X., Cheng, Z. (2024). Rapid Radiolabeling for Peptide Radiotracers. In: Witney, T.H., Shuhendler, A.J. (eds) Positron Emission Tomography. Methods in Molecular Biology, vol 2729. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3499-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3499-8_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3498-1

  • Online ISBN: 978-1-0716-3499-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics