Skip to main content

RGD-Based Fluorescence to Assess Placental Angiogenesis

  • Protocol
  • First Online:
Trophoblasts

Abstract

Normal fetal growth and placental development depend on active angiogenesis occurring at the fetomaternal interface throughout pregnancy. Nevertheless, reliable in vivo methods to assess placental angiogenesis are still missing. Here, we describe a quantitative and noninvasive in vivo method to specifically measure placental neovascularization in the gravid mouse. This method uses a technique based on the measurement of a fluorescent molecule Angiostamp700 that targets the alpha v beta 3 (αvβ3) integrin, a protein that is highly expressed by endothelial cells during the neovascularization and by trophoblast cells during invasion of the maternal decidua. Due to this noninvasive method, quantification of the fetomaternal angiogenic activity and information regarding the outcome of pregnancy are now possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfaidy N et al (2020) The emerging role of the prokineticins and Homeobox genes in the vascularization of the placenta: physiological and pathological aspects. Front Physiol 11:591850

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bardin N, Murthi P, Alfaidy N (2015) Normal and pathological placental angiogenesis. Biomed Res Int 2015:354359

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brouillet S et al (2010) Molecular characterization of EG-VEGF-mediated angiogenesis: differential effects on microvascular and macrovascular endothelial cells. Mol Biol Cell 21(16):2832–2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van Oppenraaij RH et al (2009) Vasculogenesis and angiogenesis in the first trimester human placenta: an innovative 3D study using an immersive virtual reality system. Placenta 30(3):220–222

    Article  PubMed  Google Scholar 

  5. Stevenson GN et al (2018) Automated visualization and quantification of spiral artery blood flow entering the first-trimester placenta, using 3-D power Doppler ultrasound. Ultrasound Med Biol 44(3):522–531

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cross JC, Werb Z, Fisher SJ (1994) Implantation and the placenta: key pieces of the development puzzle. Science 266(5190):1508–1518

    Article  CAS  PubMed  Google Scholar 

  7. Damsky C, Sutherland A, Fisher S (1993) Extracellular matrix 5: adhesive interactions in early mammalian embryogenesis, implantation, and placentation. FASEB J 7(14):1320–1329

    Article  CAS  PubMed  Google Scholar 

  8. Zhou Y et al (1997) Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J Clin Invest 99(9):2139–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gurtner GC et al (1995) Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev 9(1):1–14

    Article  CAS  PubMed  Google Scholar 

  10. Bowen JA, Hunt JS (1999) Expression of cell adhesion molecules in murine placentas and a placental cell line. Biol Reprod 60(2):428–434

    Article  CAS  PubMed  Google Scholar 

  11. Sutherland AE, Calarco PG, Damsky CH (1993) Developmental regulation of integrin expression at the time of implantation in the mouse embryo. Development 119(4):1175–1186

    Article  CAS  PubMed  Google Scholar 

  12. Keramidas M et al (2013) Noninvasive and quantitative assessment of in vivo angiogenesis using RGD-based fluorescence imaging of subcutaneous sponges. Mol Imaging Biol 15(3):239–244

    Article  PubMed  Google Scholar 

  13. Aumailley M et al (1991) Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett 291(1):50–54

    Article  CAS  PubMed  Google Scholar 

  14. Boturyn D et al (2004) Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis. J Am Chem Soc 126(18):5730–5739

    Article  CAS  PubMed  Google Scholar 

  15. Jin ZH et al (2007) In vivo optical imaging of integrin alphaV-beta3 in mice using multivalent or monovalent cRGD targeting vectors. Mol Cancer 6:41

    Article  PubMed  PubMed Central  Google Scholar 

  16. Koenig A et al (2010) Fluorescence diffuse optical tomography for free-space and multifluorophore studies. J Biomed Opt 15(1):016016

    Article  PubMed  Google Scholar 

  17. Koenig A et al (2008) In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography. J Biomed Opt 13(1):011008

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the following sources of funding: INSERM (U1292), University Grenoble-Alpes Fourier ANR-17-EURE-0003, Commissariat à l’Energie Atomique (IRIG/DS/Biosanté) and Institute for Advanced Biosciences, INSERM-UGA U1209, CNRS UMR 5309. The Optimal imaging platform is supported by France Life Imaging (French program “Investissement d’Avenir” grant; “Infrastructure d’avenir en Biologie Santé”, ANR-11-INBS-0006) and the IBISA French consortium “Infrastructures en Biologie Santé et Agronomie”. Imaging systems used in this study were purchased thanks to France Life Imaging (French program “Investissement d’Avenir” grant; “Infrastructure d’avenir en Biologie Sante”, ANR-11-INBS-0006) and the Contrat Plan Etat-Région Auvergne-Rhone-Alpes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Alfaidy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Josserand, V. et al. (2024). RGD-Based Fluorescence to Assess Placental Angiogenesis. In: Raha, S. (eds) Trophoblasts. Methods in Molecular Biology, vol 2728. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3495-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3495-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3494-3

  • Online ISBN: 978-1-0716-3495-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics