Skip to main content

TurboID-Based Proximity Labeling: A Method to Decipher Protein–Protein Interactions in Plants

  • Protocol
  • First Online:
Plant-Virus Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2724))

  • 685 Accesses

Abstract

Proteins form complex networks through interaction to drive biological processes. Thus, dissecting protein–protein interactions (PPIs) is essential for interpreting cellular processes. To overcome the drawbacks of traditional approaches for analyzing PPIs, enzyme-catalyzed proximity labeling (PL) techniques based on peroxidases or biotin ligases have been developed and successfully utilized in mammalian systems. However, the use of toxic H2O2 in peroxidase-based PL, the requirement of long incubation time (16–24 h), and higher incubation temperature (37 °C) with biotin in BioID-based PL significantly restricted their applications in plants. TurboID-based PL, a recently developed approach, circumvents the limitations of these methods by providing rapid PL of proteins under room temperature. We recently optimized the use of TurboID-based PL in plants and demonstrated that it performs better than BioID in labeling endogenous proteins. Here, we describe a step-by-step protocol for TurboID-based PL in studying PPIs in planta, including Agrobacterium-based transient expression of proteins, biotin treatment, protein extraction, removal of free biotin, quantification, and enrichment of the biotinylated proteins by affinity purification. We describe the PL using plant viral immune receptor N, which belongs to the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors, as a model. The method described could be easily adapted to study PPI networks of other proteins in Nicotiana benthamiana and provides valuable information for future application of TurboID-based PL in other plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson RS, Citovsky V (2005) Plant viruses. Invaders of cells and pirates of cellular pathways. Plant Physiol 138:1809–1814

    Article  CAS  Google Scholar 

  2. Berggard T, Linse S, James P (2007) Methods for the detection and analysis of protein-protein interactions. Proteomics 7:2833–2842

    Article  Google Scholar 

  3. Bruckner A, Polge C, Lentze N, Auerbach D, Schlattner U (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10:2763–2788

    Article  CAS  Google Scholar 

  4. Dunham WH, Mullin M, Gingras AC (2012) Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics 12:1576–1590

    Article  CAS  Google Scholar 

  5. Kim DI, Roux KJ (2016) Filling the void: proximity-based labeling of proteins in living cells. Trends Cell Biol 26:804–817

    Article  CAS  Google Scholar 

  6. Qin W, Cho KF, Cavanagh PE, Ting AY (2021) Deciphering molecular interactions by proximity labeling. Nat Methods 18:133–143

    Article  CAS  Google Scholar 

  7. Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA et al (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339:1328–1331

    Article  CAS  Google Scholar 

  8. Lam SS, Martell JD, Kamer KJ, Deerinck TJ, Ellisman MH, Mootha VK et al (2015) Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods 12:51–54

    Article  CAS  Google Scholar 

  9. Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T, Carr SA et al (2018) Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol 36:880–887

    Article  CAS  Google Scholar 

  10. Kim DI, Jensen SC, Noble KA, Birendra KC, Roux KH, Motamedchaboki K et al (2016) An improved smaller biotin ligase for BioID proximity labeling. Mol Biol Cell 27:1188–1196

    Article  CAS  Google Scholar 

  11. Roux KJ, Kim DI, Raida M, Burke B (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196:801–810

    Article  CAS  Google Scholar 

  12. Kubitz L, Bitsch S, Zhao XY, Schmitt K, Deweid L, Roehrig A et al (2022) Engineering of ultraID, a compact and hyperactive enzyme for proximity-dependent biotinylation in living cells. Commun Biol 5:1–14

    Article  Google Scholar 

  13. Conlan B, Stoll T, Gorman JJ, Saur I, Rathjen JP (2018) Development of a rapid in planta BioID system as a probe for plasma membrane-associated immunity proteins. Front Plant Sci 9:1882

    Article  Google Scholar 

  14. Khan M, Youn JY, Gingras AC, Subramaniam R, Desveaux D (2018) In planta proximity dependent biotin identification (BioID). Sci Rep 8:1–8

    Article  Google Scholar 

  15. Lin QP, Zhou ZJ, Luo WB, Fang MC, Li MR, Li HQ (2017) Screening of proximal and interacting proteins in rice protoplasts by proximity-dependent biotinylation. Front Plant Sci 8:749

    Article  Google Scholar 

  16. Macharia MW, Tan WYZ, Das PP, Naqvi NI, Wong SM (2019) Proximity-dependent biotinylation screening identifies NbHYPK as a novel interacting partner of ATG8 in plants. BMC Plant Biol 19:1–11

    Article  CAS  Google Scholar 

  17. Das PP, Macharia MW, Lin QS, Wong SM (2019) In planta proximity-dependent biotin identification (BioID) identifies a TMV replication co-chaperone NbSGT1 in the vicinity of 126 kDa replicase. J Proteome 204:103402

    Article  CAS  Google Scholar 

  18. Larochelle M, Bergeron D, Arcand B, Bachand F (2019) Proximity-dependent biotinylation mediated by TurboID to identify protein-protein interaction networks in yeast. J Cell Sci 132:jcs232249

    Article  CAS  Google Scholar 

  19. Shinoda N, Hanawa N, Chihara T, Koto A, Miura M (2019) Dronc-independent basal executioner caspase activity sustains Drosophila imaginal tissue growth. Proc Natl Acad Sci U S A 116:20539–20544

    Article  CAS  Google Scholar 

  20. Takano T, Wallace JT, Baldwin KT, Purkey AM, Uezu A, Courtland JL et al (2020) Chemico-genetic discovery of astrocytic control of inhibition in vivo. Nature 588:296–302

    Article  CAS  Google Scholar 

  21. Chua XEY, Aballo T, Elnemer W, Tran M, Salomon A (2021) Quantitative interactomics of Lck-TurboID in living human T cells unveils T cell receptor stimulation-induced proximal Lck interactors. J Proteome Res 20:715–726

    Article  CAS  Google Scholar 

  22. Ambekar SV, Beck JR, Mair GR (2022) TurboID identification of evolutionarily divergent components of the nuclear pore complex in the Malaria model Plasmodium berghei. MBio 13:e01815–e01822

    Article  Google Scholar 

  23. Hollstein LS, Schmitt K, Valerius O, Stahlhut G, Poggeler S (2022) Establishment of in vivo proximity labeling with biotin using TurboID in the filamentous fungus Sordariamacrospora. Sci Rep 12:1–11

    Article  Google Scholar 

  24. Kanzler CR, Donohue M, Dowdle ME, Sheets MD (2022) TurboID functions as an efficient biotin ligase for BioID applications in Xenopus embryos. Dev Biol 492:133–138

    Article  CAS  Google Scholar 

  25. Zhang YH, Shang LM, Zhang J, Liu YC, Jin CZ, Zhao YN et al (2022) An antibody-based proximity labeling map reveals mechanisms of SARS-CoV-2 inhibition of antiviral immunity. Cell Chem Biol 29:5–18

    Article  CAS  Google Scholar 

  26. Arora D, Abel NB, Liu C, Van Damme P, Yperman K, Eeckhout D et al (2020) Establishment of proximity-dependent biotinylation approaches in different plant model systems. Plant Cell 32:3388–3407

    Article  CAS  Google Scholar 

  27. Mair A, Xu SL, Branon TC, Ting AY, Bergmann DC (2019) Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID. elife 8:e47864

    Article  CAS  Google Scholar 

  28. Zhang YL, Song GY, Lai NK, Nagalakshmi U, Li YY, Zheng WJ et al (2019) TurboID-based proximity labeling reveals that UBR7 is a regulator of N NLR immune receptor-mediated immunity. Nat Commun 10:3252

    Article  CAS  Google Scholar 

  29. Whitham S, Dinesh-Kumar S, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  CAS  Google Scholar 

  30. Zhang Y, Li Y, Yang X, Wen Z, Nagalakshmi U, Dinesh-Kumar SP (2020) TurboID-based proximity labeling for in planta identification of protein-protein interaction networks. J Vis Exp 159:e60728

    Google Scholar 

  31. Teplova AD, Serebryakova MV, Galiullina RA, Chichkova NV, Vartapetian AB (2021) Identification of phytaspase interactors via the proximity-dependent biotin-based identification approach. Int J Mol Sci 22:13123

    Article  CAS  Google Scholar 

  32. Xu FF, Jia M, Li X, Tang Y, Jiang KN, Bao JS et al (2021) Exportin-4 coordinates nuclear shuttling of TOPLESS family transcription corepressors to regulate plant immunity. Plant Cell 33:697–713

    Article  Google Scholar 

  33. McCormac AC, Elliott MC, Chen DF (1998) A simple method for the production of highly competent cells of Agrobacterium for transformation via electroporation. Mol Biotechnol 9:155–159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from NIH-GM132582, NSF-MCB-EAGER-2028283 and NSF-IOS-2139987 to SPD-K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savithramma P. Dinesh-Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, Y., Zhang, Y., Dinesh-Kumar, S.P. (2024). TurboID-Based Proximity Labeling: A Method to Decipher Protein–Protein Interactions in Plants. In: Fontes, E.P., Mäkinen, K. (eds) Plant-Virus Interactions. Methods in Molecular Biology, vol 2724. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3485-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3485-1_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3484-4

  • Online ISBN: 978-1-0716-3485-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics