Skip to main content

Clearing of Vascular Tissue in Arabidopsis thaliana for Reporter Analysis of Gene Expression

  • Protocol
  • First Online:
Xylem

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2722))

Abstract

To study the gene regulatory mechanisms modulating development is essential to visualize gene expression patterns at cellular resolution. However, this kind of analysis has been limited as a consequence of the plant tissues’ opacity. In the last years, ClearSee has been increasingly used to obtain high-quality imaging of plant tissue anatomy combined with the visualization of gene expression patterns. ClearSee is established as a major tissue clearing technique due to its simplicity and versatility.

In this chapter, we outline an easy-to-follow ClearSee protocol to analyze gene expression of reporters using either β-glucuronidase (GUS) or fluorescent protein (FP) tags, compatible with different dyes to stain cell walls. We detail materials, equipment, solutions, and procedures to easily implement ClearSee for the study of vascular development in Arabidopsis thaliana, but the protocol can be easily adapted to a variety of plant tissues in a wide range of plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Warner CA, Biedrzycki ML, Jacobs SS et al (2014) An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy. Plant Physiol 166:1684–1687

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hasegawa J, Sakamoto Y, Nakagami S (2016) Three-dimensional imaging of plant organs using a simple and rapid transparency technique. Plant Cell Physiol 57:462–472

    Article  CAS  PubMed  Google Scholar 

  3. Musielak TJ, Slane D, Liebig C et al (2016) Versatile optical clearing protocol for deep tissue imaging of fluorescent proteins in Arabidopsis thaliana. PLoS One 12:e0161107

    Article  Google Scholar 

  4. Palmer WM, Martin AP, Flynn JR et al (2015) PEA-CLARITY: 3D molecular imaging of whole plant organs. Sci Rep 5:1–6

    Article  Google Scholar 

  5. Timmers AC (2016) Light microscopy of whole plant organs. J Microsc 263:165–170

    Article  CAS  PubMed  Google Scholar 

  6. Littlejohn GR, Gouveia JD, Edner C et al (2010) Perfluorodecalin enhances in vivo confocal microscopy resolution of Arabidopsis thaliana mesophyll. New Phytol 1:1018–1025

    Article  Google Scholar 

  7. Kurihara D, Mizuta Y, Sato Y, Higashiyama T (2015) ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142:4168–4179

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Okuda A, Matsusaki M, Masuda T et al (2017) Identification and characterization of GmPDIL7, a soybean ER membrane-bound protein disulfide isomerase family protein. FEBS J 284:414–428

    Article  CAS  PubMed  Google Scholar 

  9. Kelliher T, Starr D, Richbourg L et al (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:105–109

    Article  CAS  PubMed  Google Scholar 

  10. Ohtsu M, Sato Y, Kurihara D et al (2017) Spatiotemporal deep imaging of syncytium induced by the soybean cyst nematode Heterodera glycines. Protoplasma 254:2107–2115

    Article  PubMed  Google Scholar 

  11. Chu TT, Hoang TG, Trinh DC et al (2018) Sub-cellular markers highlight intracellular dynamics of membrane proteins in response to abiotic treatments in rice. Rice 11:1–8

    Article  Google Scholar 

  12. Tanaka E, Ono Y (2018) Whole-leaf fluorescence imaging to visualize in planta fungal structures of victory onion leaf rust fungus, Uromyces japonicus, and its taxonomic evaluation. Mycoscience 59:137–146

    Article  Google Scholar 

  13. Isoda M, Oyama T (2018) Use of a duckweed species, Wolffiella hyalina, for whole-plant observation of physiological behavior at the single-cell level. Plant Biotechnol 35:387–391

    Article  CAS  Google Scholar 

  14. Aki SS, Mikami T, Naramoto S et al (2019) Cytokinin signaling is essential for organ formation in Marchantia polymorpha. Plant Cell Physiol 60:1842–1854

    Article  CAS  PubMed  Google Scholar 

  15. Wu J, Mock HP, Giehl RF et al (2019) Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants. J Hazard Mater 364:581–590

    Article  CAS  PubMed  Google Scholar 

  16. Kim DR, Cho G, Jeon CW et al (2019) Mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat Commun 10(1):4802

    Article  PubMed  PubMed Central  Google Scholar 

  17. Duman Z, Hadas-Brandwein G, Eliyahu A et al (2020) Short de-etiolation increases the rooting of VC801 avocado rootstock. Plan Theory 11:1481

    Google Scholar 

  18. Ho WW, Hill CB, Doblin MS et al (2020) Integrative multi-omics analyses of barley rootzones under salinity stress reveal two distinctive salt tolerance mechanisms. Plant Commun 1:100031

    Article  PubMed  PubMed Central  Google Scholar 

  19. Arsovski AA, Zemke JE, Hamm M et al (2020) BrphyB is critical for rapid recovery to darkness in mature Brassica rapa leaves. bioRxiv

    Google Scholar 

  20. Eliyahu A, Duman Z, Sherf S et al (2020) Vegetative propagation of elite eucalyptus clones as food source for honeybees (Apis mellifera); adventitious roots versus callus formation. Isr J Plant Sci 67:83–97

    Article  Google Scholar 

  21. Kinoshita A, Koga H, Tsukaya H (2020) Expression profiles of ANGUSTIFOLIA3 and SHOOT MERISTEMLESS, key genes for meristematic activity in a one-leaf plant Monophyllaea glabra, revealed by whole-mount in situ hybridization. Front Plant Sci 11:1160

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen M, Bruisson S, Bapaume L et al (2021) VAPYRIN attenuates defence by repressing PR gene induction and localized lignin accumulation during arbuscular mycorrhizal symbiosis of Petunia hybrida. New Phytol 229:3481–3496

    Article  CAS  PubMed  Google Scholar 

  23. Kurihara D, Mizuta Y, Nagahara S et al (2021) ClearSeeAlpha: advanced optical clearing for whole-plant imaging. Plant Cell Physiol 62:1302–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brumos J, Zhao C, Gong Y et al (2020) An improved recombineering toolset for plants. Plant Cell 32:100–122

    Article  CAS  PubMed  Google Scholar 

  25. Brumos J, Bobay BG, Clark CA et al (2020) Structure–Function Analysis of Interallelic Complementation in ROOTY Transheterozygotes. Plant Physiol 183:1110–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Silverstone AL, Jung HS, Dill A et al (2001) Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13:1555–1566

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Felipo-Benavent A, Úrbez C, Blanco-Touriñán N et al (2018) Regulation of xylem fiber differentiation by gibberellins through DELLA-KNAT1 interaction. Development 145:dev164962

    Article  PubMed  Google Scholar 

  28. Ursache R, Andersen TG, Marhavý P et al (2018) Protocol for combining fluorescent proteins with histological stains for diverse cell wall components. Plant J 93:399–412

    Article  CAS  PubMed  Google Scholar 

  29. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  30. Sessions A, Weigel D, Yanofsky MF (1999) The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia. Plant J 20:259–263

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in JB’s group is funded by a grant from the Spanish Ministry of Science PID2021-1274610B-I00. JB is sponsored by a Ramon y Cajal contract RYC2019-026537-I. Research in ASM's group is funded by a grant from the Valencian Government (CISEJI/2022/28, Plan GenT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio Serrano-Mislata or Javier Brumós .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Serrano-Mislata, A., Brumós, J. (2024). Clearing of Vascular Tissue in Arabidopsis thaliana for Reporter Analysis of Gene Expression. In: Agusti, J. (eds) Xylem. Methods in Molecular Biology, vol 2722. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3477-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3477-6_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3476-9

  • Online ISBN: 978-1-0716-3477-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics