Skip to main content

Pseudomonas aeruginosa Soluble Pyocins as Antibacterial Weapons

  • Protocol
  • First Online:
Pseudomonas aeruginosa

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2721))

  • 699 Accesses

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections and associated with lung infections in cystic fibrosis (CF) patients (Lyczak et al., Microbes Infect 2:1051–1060, 2000). Multiple drug-resistant P. aeruginosa strains pose a serious problem because of antibiotic treatment failure. There is therefore a need for alternative anti-Pseudomonas molecules. Soluble pyocins (S-pyocins) are bacteriocins produced by P. aeruginosa strains that kill sensitive strains of the same species. These bacteriocins and their immunity gene are easily cloned and expressed in E. coli and their activity spectrum against different P. aeruginosa strains can be tested. In this chapter, we describe the procedures for cloning, expression, and sensitivity testing of two different S-pyocins. We also describe how to identify their receptor binding domain in sensitive strains, how to construct chimeric pyocins with extended activity spectra, and how to identify new pyocins in genomes by multiplex PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060. https://doi.org/10.1016/s1286-4579(00)01259-4

    Article  CAS  PubMed  Google Scholar 

  2. Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510. https://doi.org/10.1016/s0300-9084(02)01422-0

    Article  CAS  PubMed  Google Scholar 

  3. Ghequire MG, De Mot R (2014) Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev 38:523–568. https://doi.org/10.1111/1574-6976.12079

    Article  CAS  PubMed  Google Scholar 

  4. Elfarash A et al (2014) Pore-forming pyocin S5 utilizes the FptA ferripyochelin receptor to kill Pseudomonas aeruginosa. Microbiology (Reading) 160:261–269. https://doi.org/10.1099/mic.0.070672-0

    Article  CAS  PubMed  Google Scholar 

  5. Ghequire MG et al (2014) O serotype-independent susceptibility of Pseudomonas aeruginosa to lectin-like pyocins. Microbiology 3:875–884. https://doi.org/10.1002/mbo3.210

    Article  CAS  Google Scholar 

  6. Ghequire MGK, Ozturk B (2018) A Colicin M-type Bacteriocin from Pseudomonas aeruginosa targeting the HxuC Heme receptor requires a novel immunity partner. Appl Environ Microbiol 84. https://doi.org/10.1128/AEM.00716-18

  7. Baysse C et al (1999) Uptake of pyocin S3 occurs through the outer membrane ferripyoverdine type II receptor of Pseudomonas aeruginosa. J Bacteriol 181:3849–3851. https://doi.org/10.1128/JB.181.12.3849-3851.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Denayer S, Matthijs S, Cornelis P (2007) Pyocin S2 (Sa) kills Pseudomonas aeruginosa strains via the FpvA type I ferripyoverdine receptor. J Bacteriol 189:7663–7668. https://doi.org/10.1128/JB.00992-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Elfarash A, Wei Q, Cornelis P (2012) The soluble pyocins S2 and S4 from Pseudomonas aeruginosa bind to the same FpvAI receptor. Microbiology 1:268–275. https://doi.org/10.1002/mbo3.27

    Article  CAS  Google Scholar 

  10. Dingemans J, Ghequire MG, Craggs M, De Mot R, Cornelis P (2016) Identification and functional analysis of a bacteriocin, pyocin S6, with ribonuclease activity from a Pseudomonas aeruginosa cystic fibrosis clinical isolate. Microbiology 5:413–423. https://doi.org/10.1002/mbo3.339

    Article  CAS  Google Scholar 

  11. Behrens HM et al (2020) Pyocin S5 import into Pseudomonas aeruginosa reveals a generic mode of Bacteriocin transport. mBio 11. https://doi.org/10.1128/mBio.03230-19

  12. Stover CK et al (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964. https://doi.org/10.1038/35023079

    Article  CAS  PubMed  Google Scholar 

  13. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89. https://doi.org/10.1016/0076-6879(90)85008-c

    Article  CAS  PubMed  Google Scholar 

  14. de Lorenzo V, Timmis KN (1994) Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235:386–405. https://doi.org/10.1016/0076-6879(94)35157-0

    Article  CAS  PubMed  Google Scholar 

  15. Milton DL, O'Toole R, Horstedt P, Wolf-Watz H (1996) Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 178:1310–1319. https://doi.org/10.1128/jb.178.5.1310-1319.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652. https://doi.org/10.1073/pnas.76.4.1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bodilis J et al (2009) Distribution and evolution of ferripyoverdine receptors in Pseudomonas aeruginosa. Environ Microbiol 11:2123–2135. https://doi.org/10.1111/j.1462-2920.2009.01932.x

    Article  CAS  PubMed  Google Scholar 

  18. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386. https://doi.org/10.1385/1-59259-192-2:365

    Article  CAS  PubMed  Google Scholar 

  19. Pirnay JP et al (2005) Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river. Environ Microbiol 7:969–980. https://doi.org/10.1111/j.1462-2920.2005.00776.x

    Article  CAS  PubMed  Google Scholar 

  20. Dingemans J et al (2014) The deletion of TonB-dependent receptor genes is part of the genome reduction process that occurs during adaptation of Pseudomonas aeruginosa to the cystic fibrosis lung. Pathog Dis 71:26–38. https://doi.org/10.1111/2049-632X.12170

    Article  CAS  PubMed  Google Scholar 

  21. Pattery T, Hernalsteens JP, De Greve H (1999) Identification and molecular characterization of a novel Salmonella enteritidis pathogenicity islet encoding an ABC transporter. Mol Microbiol 33:791–805. https://doi.org/10.1046/j.1365-2958.1999.01526.x

    Article  CAS  PubMed  Google Scholar 

  22. de Chial M et al (2003) Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa. Microbiology (Reading) 149:821–831. https://doi.org/10.1099/mic.0.26136-0

    Article  CAS  PubMed  Google Scholar 

  23. Michel L, Bachelard A, Reimmann C (2007) Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa. Microbiology (Reading) 153:1508–1518. https://doi.org/10.1099/mic.0.2006/002915-0

    Article  CAS  PubMed  Google Scholar 

  24. Ling H, Saeidi N, Rasouliha BH, Chang MW (2010) A predicted S-type pyocin shows a bactericidal activity against clinical Pseudomonas aeruginosa isolates through membrane damage. FEBS Lett 584:3354–3358. https://doi.org/10.1016/j.febslet.2010.06.021

    Article  CAS  PubMed  Google Scholar 

  25. Winsor GL et al (2016) Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the pseudomonas genome database. Nucleic Acids Res 44:D646–D653. https://doi.org/10.1093/nar/gkv1227

    Article  CAS  PubMed  Google Scholar 

  26. de Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572. https://doi.org/10.1128/jb.172.11.6568-6572.1990

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Cornelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cornelis, P., Dingemans, J., Baysse, C. (2024). Pseudomonas aeruginosa Soluble Pyocins as Antibacterial Weapons. In: Bertoni, G., Ferrara, S. (eds) Pseudomonas aeruginosa. Methods in Molecular Biology, vol 2721. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3473-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3473-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3472-1

  • Online ISBN: 978-1-0716-3473-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics