Skip to main content

Vagus Nerve Manipulation and Microglial Plasticity in the Prenatal Brain

  • Protocol
  • First Online:
Vagus Nerve Stimulation

Part of the book series: Neuromethods ((NM,volume 205))

  • 402 Accesses

Abstract

The efferent and afferent effects of the vagus nerve on the developing brain have remained enigmatic. Here we review the evidence of such effects on microglial plasticity in the sheep model of human fetal development, one of the most recognized and deployed models of human fetal physiology. We show that vagotomy alters microglial phenotype and that this effect is hormetic under conditions of mild systemic inflammation, as may occur antepartum with chorioamnionitis. We present the methodology to assess not only biomarker-based microglial activation (Iba-1), but also the morphometric features of the microglia. Together, these assessments provide a more comprehensive toolbox of glial phenotypical characterizations, especially in the context of investigating the locoregional vagal control of glial function. The presented findings support the earlier discoveries in preclinical and clinical models of adult physiology whereby vagotomy appeared neuroprotective for Parkinson’s, explained, at least in part, by the effects on microglia. In addition, we present the approach to measure and the findings on regional cerebral blood flow changes in relation to vagus nerve manipulation. Together, the body of evidence underscores the importance of both the efferent and the afferent vagal pathways, via the vagus nerve, in the programming of microglial phenotype in the developing brain. The significance of these relationships for the development and treatment of early susceptibility to neuroinflammatory and neurodegenerative disorders in later life requires further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Who watches the watchers?

References

  1. Pavlov VA, Tracey KJ (2022) Bioelectronic medicine: preclinical insights and clinical advances. Neuron. https://doi.org/10.1016/j.neuron.2022.09.003

  2. Frasch MG et al (2016) Decreased neuroinflammation correlates to higher vagus nerve activity fluctuations in near-term ovine fetuses: a case for the afferent cholinergic anti-inflammatory pathway? J Neuroinflammation 13:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pavlov VA et al (2006) Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc Natl Acad Sci USA 103:5219–5223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Novellino F et al (2020) Innate immunity: a common denominator between neurodegenerative and neuropsychiatric diseases. Int J Mol Sci 21:1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carnevale D (2022) Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat Rev Cardiol 19:379–394

    Article  PubMed  Google Scholar 

  6. Jakob MO, Murugan S, Klose CSN (2020) Neuro-immune circuits regulate immune responses in tissues and organ homeostasis. Front Immunol 11:308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Diamond B, Tracey KJ (2011) Mapping the immunological homunculus. Proc Natl Acad Sci USA 108:3461–3462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rosas-Ballina M et al (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334:98–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cortes M et al (2017) α7 nicotinic acetylcholine receptor signaling modulates the inflammatory phenotype of fetal brain microglia: first evidence of interference by iron homeostasis. Sci Rep 7:10645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frasch MG, Nygard KL (2017) Location, location, location: appraising the pleiotropic function of HMGB1 in fetal brain. J Neuropathol Exp Neurol 76:332–334

    Article  PubMed  PubMed Central  Google Scholar 

  11. Frasch MG et al (2018) Sculpting the sculptors: methods for studying the fetal cholinergic signaling on systems and cellular scales. Methods Mol Biol 1781:341–352

    Article  CAS  PubMed  Google Scholar 

  12. Ottani A et al (2009) Vagus nerve mediates the protective effects of melanocortins against cerebral and systemic damage after ischemic stroke. J Cereb Blood Flow Metab 29:512–523

    Article  CAS  PubMed  Google Scholar 

  13. Osterhout JA et al (2022) A preoptic neuronal population controls fever and appetite during sickness. Nature 606:937–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Desplats, P., Gutierrez, A. M., Antonelli, M. C. & Frasch, M. G. Microglial memory of early life stress and inflammation: susceptibility to neurodegeneration in adulthood. Neurosci Biobehav Rev (2019) https://doi.org/10.1016/j.neubiorev.2019.10.013

  15. Li Q, Barres BA (2018) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18:225–242

    Article  CAS  PubMed  Google Scholar 

  16. McNamara NB et al (2022) Microglia regulate central nervous system myelin growth and integrity. Nature. https://doi.org/10.1038/s41586-022-05534-y

  17. Morrison JL et al (2018) Improving pregnancy outcomes in humans through studies in sheep. Am J Physiol Regul Integr Comp Physiol 315:R1123–R1153

    Article  CAS  PubMed  Google Scholar 

  18. Burns P et al (2015) Instrumentation of near-term fetal sheep for multivariate chronic non-anesthetized recordings. J Vis Exp 105:e52581

    Google Scholar 

  19. Conway CR et al (2006) Cerebral blood flow changes during vagus nerve stimulation for depression. Psychiatry Res 146:179–184

    Article  PubMed  Google Scholar 

  20. Császár E et al (2022) Microglia modulate blood flow, neurovascular coupling, and hypoperfusion via purinergic actions. J Exp Med 219:e20211071

    Article  PubMed  PubMed Central  Google Scholar 

  21. Castel A et al (2021) Recording and manipulation of vagus nerve electrical activity in chronically instrumented unanesthetized near term fetal sheep. J Neurosci Methods 360:109257

    Article  PubMed  Google Scholar 

  22. Cao M et al (2022) The vagus nerve regulates immunometabolic homeostasis in the ovine fetus near term: impact on terminal ileum. arXiv [q-bio.TO]

    Google Scholar 

  23. Nitsos I et al (2006) Chronic exposure to intra-amniotic lipopolysaccharide affects the ovine fetal brain. J Soc Gynecol Investig 13:239–247

    Article  CAS  PubMed  Google Scholar 

  24. Rees S, Inder T (2005) Fetal and neonatal origins of altered brain development. Early Hum Dev 81:753–761

    Article  PubMed  Google Scholar 

  25. Wang X, Rousset CI, Hagberg H, Mallard C (2006) Lipopolysaccharide-induced inflammation and perinatal brain injury. Semin Fetal Neonatal Med 11:343–353

    Article  PubMed  Google Scholar 

  26. Durosier LD et al (2015) Does heart rate variability reflect the systemic inflammatory response in a fetal sheep model of lipopolysaccharide-induced sepsis? Physiol Meas 36:2089–2102

    Article  PubMed  PubMed Central  Google Scholar 

  27. Borovikova LV et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    Article  CAS  PubMed  Google Scholar 

  28. Cao M et al (2015) Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation. Front Cell Neurosci 9:294

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hovens I, Nyakas C, Schoemaker R (2014) A novel method for evaluating microglial activation using ionized calcium-binding adaptor protein-1 staining: cell body to cell size ratio. Neuroimmunol Neuroinflamm 1:82

    Article  Google Scholar 

  30. McCallum J et al (2008) Effects of antenatal glucocorticoids on cerebral substrate metabolism in the preterm ovine fetus. Am J Obstet Gynecol 198(105):e1–105.e9

    Google Scholar 

  31. Frasch MG et al (2006) Stereotactic approach and electrophysiological characterization of thalamic reticular and dorsolateral nuclei of the juvenile pig. Acta Neurobiol Exp 66:43–54

    Google Scholar 

  32. Eucker SA et al (2010) Development of a fluorescent microsphere technique for rapid histological determination of cerebral blood flow. Brain Res 1326:128–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buckberg GD et al (1971) Some sources of error in measuring regional blood flow with radioactive microspheres. J Appl Physiol 31:598–604

    Article  CAS  PubMed  Google Scholar 

  34. Rudolph AM (1985) Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ Res 57:811–821

    Article  CAS  PubMed  Google Scholar 

  35. Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1:43–46

    Article  CAS  PubMed  Google Scholar 

  36. Muller T et al (2005) Redistribution of cerbral blood flow (CBF) during repeated umblical cord occlusions (UCO) in fetal sheep. Society of Gynecological Investigations, Los Angeles

    Google Scholar 

  37. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  PubMed  Google Scholar 

  38. Gallaher ZR, Ryu V, Herzog T, Ritter RC, Czaja K (2012) Changes in microglial activation within the hindbrain, nodose ganglia, and the spinal cord following subdiaphragmatic vagotomy. Neurosci Lett 513:31–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hofmann GC, Hasser EM, Kline DD (2021) Unilateral vagotomy alters astrocyte and microglial morphology in the nucleus tractus solitarii of the rat. Am J Physiol Regul Integr Comp Physiol 320:R945–R959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Han J, Fan Y, Zhou K, Blomgren K, Harris RA (2021) Uncovering sex differences of rodent microglia. J Neuroinflammation 18:74

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lynch MA (2022) Exploring sex-related differences in microglia may be a game-changer in precision medicine. Front Aging Neurosci 14:868448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meneses G et al (2016) Electric stimulation of the vagus nerve reduced mouse neuroinflammation induced by lipopolysaccharide. J Inflamm 13:33

    Article  CAS  Google Scholar 

  43. Namgung U, Kim K-J, Jo B-G, Park J-M (2022) Vagus nerve stimulation modulates hippocampal inflammation caused by continuous stress in rats. J Neuroinflammation 19:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fitchett A, Mastitskaya S, Aristovich K (2021) Selective neuromodulation of the vagus nerve. Front Neurosci 15:685872

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kim S et al (2019) Transneuronal propagation of pathologic α-synuclein from the gut to the brain models parkinson’s disease. Neuron 103:627–641.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu B, Yin D, Zhao H, Zhang L (2022) The immunology of Parkinson’s disease. Semin Immunopathol 44:659–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu B et al (2017) Vagotomy and Parkinson disease: a Swedish register-based matched-cohort study. Neurology 88:1996–2002

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gomez-Arboledas A, Acharya MM, Tenner AJ (2021) The role of complement in synaptic pruning and neurodegeneration. Immunotargets Ther 10:373–386

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cao M et al (2019) α7 nicotinic acetylcholine receptor signaling modulates ovine fetal brain astrocytes transcriptome in response to endotoxin. Front Immunol 10:1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Frasch MG, Snir G, Antonelli MC (2019) Autism spectrum disorder: a neuro-immunometabolic hypothesis of the developmental origins. arXiv [q-bio.GN]

    Google Scholar 

  51. Frasch MG (2020) Heart rate variability code: does it exist and can we hack it? arXiv [q-bio.TO]

    Google Scholar 

  52. Burns P et al (2020) The neonatal sepsis is diminished by cervical vagus nerve stimulation and tracked non-invasively by ECG: a preliminary report in the piglet model. arXiv [q-bio.TO]

    Google Scholar 

  53. Castel A et al (2023) Perinatal physiology. In: Frasch MG, Porges E (eds) Vagus nerve stimulation. Springer

    Google Scholar 

  54. Xu A et al (2014) Adaptive brain shut-down counteracts neuroinflammation in the near-term ovine fetus. Front Neurol 5:110

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin G. Frasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Courchesne, M. et al. (2024). Vagus Nerve Manipulation and Microglial Plasticity in the Prenatal Brain. In: Frasch, M.G., Porges, E.C. (eds) Vagus Nerve Stimulation . Neuromethods, vol 205. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3465-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3465-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3464-6

  • Online ISBN: 978-1-0716-3465-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics