Skip to main content

Hubs and Bottlenecks in Protein-Protein Interaction Networks

  • Protocol
  • First Online:
Reverse Engineering of Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2719))

Abstract

Protein-protein interaction networks (PPINs) represent the physical interactions among proteins in a cell. These interactions are critical in all cellular processes, including signal transduction, metabolic regulation, and gene expression. In PPINs, centrality measures are widely used to identify the most critical nodes. The two most commonly used centrality measures in networks are degree and betweenness centralities. Degree centrality is the number of connections a node has in the network, and betweenness centrality is the measure of the extent to which a node lies on the shortest paths between pairs of other nodes in the network. In PPINs, proteins with high degree and betweenness centrality are referred to as hubs and bottlenecks respectively. Hubs and bottlenecks are topologically and functionally essential proteins that play crucial roles in maintaining the network’s structure and function. This article comprehensively reviews essential literature on hubs and bottlenecks, including their properties and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yanagida M (2002) Functional proteomics; current achievements. J Chromatogr B 771(1–2):89–106

    Article  Google Scholar 

  2. Berggård T, Linse S, James P (2007) Methods for the detection and analysis of protein–protein interactions. Proteomics 7(16):2833–2842

    Article  Google Scholar 

  3. Nooren IM, Thornton JM (2003) Diversity of protein–protein interactions. EMBO J 22(14):3486–3492

    Article  Google Scholar 

  4. Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci 93(1):13–20

    Article  Google Scholar 

  5. Phizicky EM, Fields S (1995) Protein-protein interactions: methods for detection and analysis. Microbiol Rev 59(1):94–123

    Article  Google Scholar 

  6. Prelich G, Tan CK, Kostura M, Mathews MB, So AG, Downey KM, Stillman B (1987) Functional identity of proliferating cell nuclear antigen and a DNA polymerase-δ auxiliary protein. Nature 326(6112):517–520

    Article  Google Scholar 

  7. Srere PA (1987) Complexes of sequential metabolic enzymes. Annu Rev Biochem 56(1):89–124

    Article  Google Scholar 

  8. Vincent JP, Lazdunski M (1972) Trypsin-pancreatic trypsin inhibitor association. Dynamics of the interaction and role of disulfide bridges. Biochemistry 11(16):2967–2977

    Article  Google Scholar 

  9. Weber J, Lee RS, Wilke-Mounts S, Grell E, Senior AE (1993) Combined application of site-directed mutagenesis, 2-azido-ATP labeling, and lin-benzo-ATP binding to study the noncatalytic sites of Escherichia coli F1-ATPase. J Biol Chem 268(9):6241–6247

    Article  Google Scholar 

  10. Hill RL, Brew K (1975) Lactose synthetase. Adv Enzvmol Relat Areas Mol Biol 43:411–490

    Google Scholar 

  11. Podobnik M, Kraševec N, Zavec AB, Naneh O, Flašker A, Caserman S, Hodnik V, Anderluh G (2016) How to study protein-protein interactions. Acta Chim Slov 63(3):424–439

    Article  Google Scholar 

  12. Rao VS, Srinivas K, Sujini GN, Kumar GN (2014) Protein-protein interaction detection: methods and analysis. Int J Proteomics 2014:147648

    Article  Google Scholar 

  13. Xing S, Wallmeroth N, Berendzen KW, Grefen C (2016) Techniques for the analysis of protein-protein interactions in vivo. Plant Physiol 171(2):727–758

    Google Scholar 

  14. Lehne B, Schlitt T (2009) Protein-protein interaction databases: keeping up with growing interactomes. Hum Genomics 3:1–7

    Article  Google Scholar 

  15. Boeri Erba E, Petosa C (2015) The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes. Protein Sci 24(8):1176–1192

    Article  Google Scholar 

  16. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Séraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17(10):1030–1032

    Article  Google Scholar 

  17. Kobe B, Guncar G, Buchholz R, Huber T, Maco B, Cowieson N, Martin JL, Marfori M, Forwood JK (2008) Crystallography and protein–protein interactions: biological interfaces and crystal contacts. Biochem Soc Trans 36(6):1438–1441

    Article  Google Scholar 

  18. Zuiderweg ER (2002) Mapping protein− protein interactions in solution by NMR spectroscopy. Biochemistry 41(1):1–7

    Article  Google Scholar 

  19. Vinogradova O, Qin J (2012) NMR as a unique tool in assessment and complex determination of weak protein–protein interactions. In: NMR of proteins and small biomolecules. Springer, Berlin, pp 35–45

    Google Scholar 

  20. Grigoriev A (2001) A relationship between gene expression and protein interactions on the proteome scale: analysis of the bacteriophage T7 and the yeast Saccharomyces cerevisiae. Nucleic Acids Res 29(17):3513–3519

    Article  Google Scholar 

  21. Remy I, Campbell-Valois FX, Michnick SW (2007) Detection of protein–protein interactions using a simple survival protein-fragment complementation assay based on the enzyme dihydrofolate reductase. Nat Protoc 2(9):2120–2125

    Article  Google Scholar 

  22. Ooi SL, Pan X, Peyser BD, Ye P, Meluh PB, Yuan DS, Irizarry RA, Bader JS, Spencer FA, Boeke JD (2006) Global synthetic-lethality analysis and yeast functional profiling. Trends Genet 22(1):56–63

    Article  Google Scholar 

  23. Fields S, Song OK (1989) A novel genetic system to detect protein–protein interactions. Nature 340(6230):245–246

    Article  Google Scholar 

  24. Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 96:2896–2901

    Article  Google Scholar 

  25. Juan D, Pazos F, Valencia A (2008) High-confidence prediction of global interactomes based on genome-wide coevolutionary networks. Proc Natl Acad Sci 105(3):934–939

    Article  Google Scholar 

  26. Goh CS, Cohen FE (2002) Co-evolutionary analysis reveals insights into protein–protein interactions. J Mol Biol 324(1):177–192

    Article  Google Scholar 

  27. Pazes F, Valencia A (2001) Similarity of phylogenetic trees as indicator of protein-protein interaction [J]. Protein Eng 14(9):609–614

    Article  Google Scholar 

  28. Yamada M, Kabir MS, Tsunedomi R (2004) Divergent promoter organization may be a preferred structure for gene control in Escherichia coli. Microbial Physiol 6(3–4):206–210

    Google Scholar 

  29. Lee SA, Chan CH, Tsai CH, Lai JM, Wang FS, Kao CY, Huang CY (2008) Ortholog-based protein-protein interaction prediction and its application to inter-species interactions. BMC Bioinformatics 9:1–9

    Article  Google Scholar 

  30. Memišević V, Wallqvist A, Reifman J (2013) Reconstituting protein interaction networks using parameter-dependent domain-domain interactions. BMC Bioinformatics 14(1):1–5

    Article  Google Scholar 

  31. Pazos F, Valencia A (2002) In silico two-hybrid system for the selection of physically interacting protein pairs. Proteins 47(2):219–227

    Article  Google Scholar 

  32. Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D (1999) Detecting protein function and protein-protein interactions from genome sequences. Science 285(5428):751–753

    Article  Google Scholar 

  33. Tsoka S, Ouzounis CA (2000) Prediction of protein interactions: metabolic enzymes are frequently involved in gene fusion. Nat Genet 26(2):141–142

    Article  Google Scholar 

  34. Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA (1999) Protein interaction maps for complete genomes based on gene fusion events. Nature 402(6757):86–90

    Article  Google Scholar 

  35. Bock JR, Gough DA (2001) Predicting protein–protein interactions from primary structure. Bioinformatics 17(5):455–460

    Article  Google Scholar 

  36. Sprinzak E, Margalit H (2001) Correlated sequence-signatures as markers of protein-protein interaction. J Mol Biol 311(4):681–692

    Article  Google Scholar 

  37. Li BQ, Feng KY, Chen L, Huang T, Cai YD (2012) Prediction of protein-protein interaction sites by random forest algorithm with mRMR and IFS. PLoS One 7(8):1–10

    Article  Google Scholar 

  38. Zhou HX, Shan Y (2001) Prediction of protein interaction sites from sequence profile and residue neighbor list. Proteins 44(3):336–343

    Article  Google Scholar 

  39. Barman RK, Saha S, Das S (2014) Prediction of interactions between viral and host proteins using supervised machine learning methods. PLoS One 9(11):e112034

    Article  Google Scholar 

  40. Sarkar D, Jana T, Saha S (2018) LMDIPred: a web-server for prediction of linear peptide sequences binding to SH3, WW and PDZ domains. PLoS One 13(7):e0200430

    Article  Google Scholar 

  41. Du T, Liao L, Wu CH, Sun B (2016) Prediction of residue-residue contact matrix for protein-protein interaction with fisher score features and deep learning. Methods 110:97–105

    Article  Google Scholar 

  42. You ZH, Lei YK, Zhu L, Xia J, Wang B (2013) Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis. BMC Bioinformatics 14:1–11

    Article  Google Scholar 

  43. Xu B, Guan J (2014) From function to interaction: a new paradigm for accurately predicting protein complexes based on protein-to-protein interaction networks. IEEE/ACM Trans Comput Biol Bioinform 11(4):616–627

    Article  Google Scholar 

  44. Xenarios I, Fernandez E, Salwinski L, Duan XJ, Thompson MJ, Marcotte EM, Eisenberg D (2001) DIP: the database of interacting proteins: 2001 update. Nucleic Acids Res 29(1):239–241

    Article  Google Scholar 

  45. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, Margalit H (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32(suppl 1):D452–D455

    Article  Google Scholar 

  46. Shafreen B, Venugopal A (2009) Human protein reference database2009 update. Nucleic Acids Res 37:D767–D772

    Google Scholar 

  47. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34(suppl 1):D535–D539

    Article  Google Scholar 

  48. Chatr-aryamontri A, Kerrien S, Khadake J et al (2008) MINT and IntAct contribute to the second BioCreative challenge: serving the text-mining community with high quality molecular interaction data. Genome Biol 9(Suppl 2):S5

    Article  Google Scholar 

  49. Turner B, Razick S, Turinsky AL, Vlasblom J, Crowdy EK, Cho E, Morrison K, Donaldson IM, Wodak SJ (2010) iRefWeb: interactive analysis of consolidated protein interaction data and their supporting evidence. Database (Oxford) 2010:1–5

    Article  Google Scholar 

  50. Giurgiu M, Reinhard J, Brauner B, Dunger-Kaltenbach I, Fobo G, Frishman G, Montrone C, Ruepp A (2019) CORUM: the comprehensive resource of mammalian protein complexes—2019. Nucleic Acids Res 47(D1):D559–D563

    Article  Google Scholar 

  51. Bader GD, Donaldson I, Wolting C, Ouellette BF, Pawson T, Hogue CW (2001) BIND—the biomolecular interaction network database. Nucleic Acids Res 29(1):242–245

    Article  Google Scholar 

  52. Güldener U, Münsterkötter M, Oesterheld M, Pagel P, Ruepp A, Mewes HW, Stümpflen V (2006) MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Res 34(suppl 1):D436–D441

    Article  Google Scholar 

  53. Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stümpflen V, Mewes HW, Ruepp A (2005) The MIPS mammalian protein–protein interaction database. Bioinformatics 21(6):832–834

    Article  Google Scholar 

  54. Brown KR, Jurisica I (2005) Online predicted human interaction database. Bioinformatics 21(9):2076–2082

    Article  Google Scholar 

  55. Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH (2016) HIPPIE v2. 0: enhancing meaningfulness and reliability of protein–protein interaction networks. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw985

  56. Calderone A, Castagnoli L, Cesareni G (2013) Mentha: a resource for browsing integrated protein-interaction networks. Nat Methods 10(8):690–691

    Article  Google Scholar 

  57. Patil A, Nakai K, Nakamura H (2011) HitPredict: a database of quality assessed protein–protein interactions in nine species. Nucleic Acids Res 39(suppl 1):D744–D749

    Article  Google Scholar 

  58. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C (2021) The STRING database in 2021: customizable protein-protein networks, and functional 475 characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49:D605–D612

    Article  Google Scholar 

  59. Kotlyar M, Pastrello C, Sheahan N, Jurisica I (2016) Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res 44(D1):D536–D541

    Article  Google Scholar 

  60. Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, Doyle A, Garcia-Hernandez M, Huala E, Lander G, Montoya M, Miller N (2003) The arabidopsis information resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31(1):224–228

    Article  Google Scholar 

  61. Pavlopoulos GA, O’Donoghue SI, Satagopam VP, Soldatos TG, Pafilis E, Schneider R (2008) Arena3D: visualization of biological networks in 3D. BMC Syst Biol 2:1–7

    Article  Google Scholar 

  62. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  Google Scholar 

  63. Hooper SD, Bork P (2005) Medusa: a simple tool for interaction graph analysis. Bioinformatics 21(24):4432–4433

    Article  Google Scholar 

  64. Brown KR, Otasek D, Ali M, McGuffin MJ, Xie W, Devani B, Toch IL, Jurisica I (2009) NAViGaTOR: network analysis, visualization and graphing Toronto. Bioinformatics 25(24):3327–3329

    Article  Google Scholar 

  65. Breitkreutz BJ, Stark C, Tyers M (2003) Osprey: a network visualization system. Genome Biol 4:1–4

    Article  Google Scholar 

  66. Hu Z, Mellor J, Wu J, DeLisi C (2004) VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinformatics 5(1):1–8

    Article  Google Scholar 

  67. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the international AAAI conference on web and social media, vol. 3, issue 1, pp 361–362

    Google Scholar 

  68. Bayelas A (1950) Communication patterns in task-oriented group. J Acoust Soc Am 22:725–730

    Article  Google Scholar 

  69. Shimbel A (1953) Structural parameters of communication networks. Bull Math Biophys 15:501–507

    Article  MathSciNet  Google Scholar 

  70. Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43

    Article  MATH  Google Scholar 

  71. Freeman LC (2002) Centrality in social networks: conceptual clarification. In: Social network: critical concepts in sociology, vol 1. Routledge, London, pp 238–263

    Google Scholar 

  72. Bonacich P (1972) Technique for analyzing overlapping memberships. Sociol Methodol 4:176–185

    Article  Google Scholar 

  73. Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci 101(11):3747–3752

    Article  MATH  Google Scholar 

  74. Opsahl T, Agneessens F, Skvoretz J (2010) Node centrality in weighted networks: generalizing degree and shortest paths. Soc Netw 32(3):245–251

    Article  Google Scholar 

  75. Newman ME, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E 64(2):026118

    Article  Google Scholar 

  76. Zelen SM (1989) Rethinking centrality: methods and examples. Soc Netw 11:1–37

    Article  MathSciNet  Google Scholar 

  77. Joyce KE, Laurienti PJ, Burdette JH, Hayasaka S (2010) A new measure of centrality for brain networks. PLoS One 5(8):e12200

    Article  Google Scholar 

  78. Liu Y, Tang M, Zhou T, Do Y (2016) Identify influential spreaders in complex networks, the role of neighborhood. Phys A Stat Mech Appl 452:289–298

    Article  Google Scholar 

  79. Wang J, Hou X, Li K, Ding Y (2017) A novel weight neighborhood centrality algorithm for identifying influential spreaders in complex networks. Phys A Stat Mech Appl 475:88–105

    Article  Google Scholar 

  80. Bonacich P (1987) Centrality and power: a family of measures. Am J Sociol 92:1170–1182

    Article  Google Scholar 

  81. Scardoni G, Petterlini M, Laudanna C (2009) Analyzing biological network parameters with CentiScaPe. Bioinformatics 25(21):2857–2859

    Article  Google Scholar 

  82. Ashtiani M, Mirzaie M, Jafari M (2019) CINNA: an R/CRAN package to decipher central informative nodes in network analysis. Bioinformatics 35(8):1436–1437

    Article  Google Scholar 

  83. Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJ Complex Syst 1695(5):1–9

    Google Scholar 

  84. Hagberg A, Swart P, Chult S (2008) Exploring network structure, dynamics, and function using NetworkX. Los Alamos National Lab (LANL), Los Alamos

    Google Scholar 

  85. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8(4):1–7

    Google Scholar 

  86. Gu Z, Wang J (2013) CePa: an R package for finding significant pathways weighted by multiple network centralities. Bioinformatics 29(5):658–660

    Article  Google Scholar 

  87. Junker BH, Koschützki D, Schreiber F (2006) Exploration of biological network centralities with CentiBiN. BMC Bioinformatics 7(1):1–7

    Article  Google Scholar 

  88. Gräßler J, Koschützki D, Schreiber F (2012) CentiLib: comprehensive analysis and exploration of network centralities. Bioinformatics 28(8):1178–1179

    Article  Google Scholar 

  89. Potapov AP, Voss N, Sasse N, Wingender E (2005) Topology of mammalian transcription networks. Genome Inform 16(2):270–278

    Google Scholar 

  90. Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 3(4):e59

    Article  MathSciNet  Google Scholar 

  91. Li C, Li Q, Van Mieghem P, Stanley HE, Wang H (2015) Correlation between centrality metrics and their application to the opinion model. Eur Phys J B 88:1–3

    Article  MathSciNet  Google Scholar 

  92. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M (2004) Erratum: evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430(6997):380

    Article  Google Scholar 

  93. Newman ME (2005) Power laws, Pareto distributions and Zipf’s law. Contemp Phys 46(5):323–351

    Article  Google Scholar 

  94. Sinha A, Nagarajaram HA (2013) Effect of alternative splicing on the degree centrality of nodes in protein–protein interaction networks of Homo sapiens. J Proteome Res 12(4):1980–1988

    Article  Google Scholar 

  95. Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42

    Article  Google Scholar 

  96. Vallabhajosyula RR, Chakravarti D, Lutfeali S, Ray A, Raval A (2009) Identifying hubs in protein interaction networks. PLoS One 4(4):e5344

    Article  Google Scholar 

  97. Hahn MW, Kern AD (2005) Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol Biol Evol 22(4):803–806

    Article  Google Scholar 

  98. Patil A, Kinoshita K, Nakamura H (2010) Domain distribution and intrinsic disorder in hubs in the human protein–protein interaction network. Protein Sci 19(8):1461–1468

    Article  Google Scholar 

  99. Hu G, Wu Z, Uversky VN, Kurgan L (2017) Functional analysis of human hub proteins and their interactors involved in the intrinsic disorder-enriched interactions. Int J Mol Sci 18(12):2761

    Article  Google Scholar 

  100. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293(2):321–331

    Article  Google Scholar 

  101. Dunker AK, Obradovic Z (2001) The protein trinity—linking function and disorder. Nat Biotechnol 19(9):805–806

    Article  Google Scholar 

  102. Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Radivojac P, Uversky VN, Vidal M, Iakoucheva LM (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2(8):e100

    Article  Google Scholar 

  103. Iakoucheva LM, Brown CJ, Lawson JD, Obradović Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 23(3):573–584

    Article  Google Scholar 

  104. Wang J, Cao Z, Zhao L, Li S (2011) Novel strategies for drug discovery based on intrinsically disordered proteins (IDPs). Int J Mol Sci 12(5):3205–3219

    Article  Google Scholar 

  105. Ekman D, Light S, Björklund ÅK, Elofsson A (2006) What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? Genome Biol 7:1–3

    Article  Google Scholar 

  106. Kim PM, Lu LJ, Xia Y, Gerstein MB (2006) Relating three-dimensional structures to protein networks provides evolutionary insights. Science 314(5807):1938–1941

    Article  Google Scholar 

  107. Humphris EL, Kortemme T (2007) Design of multi-specificity in protein interfaces. PLoS Comput Biol 3(8):e164

    Article  MathSciNet  Google Scholar 

  108. Patil A, Nakamura H (2006) Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Lett 580(8):2041–2045

    Article  Google Scholar 

  109. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40(12):1413–1441

    Article  Google Scholar 

  110. Tsai CJ, Ma B, Nussinov R (2009) Protein–protein interaction networks: how can a hub protein bind so many different partners? Trends Biochem Sci 34(12):594–600

    Article  Google Scholar 

  111. Patil A, Kinoshita K, Nakamura H (2010) Hub promiscuity in protein-protein interaction networks. Int J Mol Sci 11(4):1930–1943

    Article  Google Scholar 

  112. Khoury MP, Bourdon JC (2011) p53 isoforms: an intracellular microprocessor? Genes Cancer 2(4):453–465

    Article  Google Scholar 

  113. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296(5568):750–752

    Article  Google Scholar 

  114. Krylov DM, Wolf YI, Rogozin IB, Koonin EV (2003) Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res 13(10):2229–2235

    Article  Google Scholar 

  115. Hahn MW, Conant GC, Wagner A (2004) Molecular evolution in large genetic networks: does connectivity equal constraint? J Mol Evol 58:203–211

    Article  Google Scholar 

  116. Evangelisti AM, Wagner A (2004) Molecular evolution in the yeast transcriptional regulation network. J Exp Zool B Mol Dev Evol 302(4):392–411

    Article  Google Scholar 

  117. Manna B, Bhattacharya T, Kahali B, Ghosh TC (2009) Evolutionary constraints on hub and non-hub proteins in human protein interaction network: insight from protein connectivity and intrinsic disorder. Gene 434(1–2):50–55

    Article  Google Scholar 

  118. Pang E, Hao Y, Sun Y, Lin K (2016) Differential variation patterns between hubs and bottlenecks in human protein-protein interaction networks. BMC Evol Biol 16:1–9

    Article  Google Scholar 

  119. Batada NN, Hurst LD, Tyers M (2006) Evolutionary and physiological importance of hub proteins. PLoS Comput Biol 2(7):e88

    Article  Google Scholar 

  120. Higurashi M, Ishida T, Kinoshita K (2008) Identification of transient hub proteins and the possible structural basis for their multiple interactions. Protein Sci 217(1):72–78

    Article  Google Scholar 

  121. Kim PM, Sboner A, Xia Y, Gerstein M (2008) The role of disorder in interaction networks: a structural analysis. Mol Syst Biol 4(1):179

    Article  Google Scholar 

  122. Alberghina L, Mavelli G, Drovandi G, Palumbo P, Pessina S, Tripodi F, Coccetti P, Vanoni M (2012) Cell growth and cell cycle in Saccharomyces cerevisiae: basic regulatory design and protein–protein interaction network. Biotechnol Adv 30(1):52–72

    Article  Google Scholar 

  123. Itzhaki Z (2011) Domain-domain interactions underlying herpesvirus-human protein-protein interaction networks. PLoS One 26(7):e21724

    Article  Google Scholar 

  124. Calderwood MA, Venkatesan K, Xing L, Chase MR, Vazquez A, Holthaus AM, Ewence AE, Li N, Hirozane-Kishikawa T, Hill DE, Vidal M (2007) Epstein–Barr virus and virus human protein interaction maps. Proc Natl Acad Sci 104(18):7606–7611

    Article  Google Scholar 

  125. Halehalli RR, Nagarajaram HA (2015) Molecular principles of human virus protein–protein interactions. Bioinformatics 31(7):1025–1033

    Article  Google Scholar 

  126. Ahmed H, Howton TC, Sun Y, Weinberger N, Belkhadir Y, Mukhtar MS (2018) Network biology discovers pathogen contact points in host protein-protein interactomes. Nat Commun 9(1):2312

    Article  Google Scholar 

  127. Zhao Z, Xia J, Tastan O, Singh I, Kshirsagar M, Carbonell J, Klein-Seetharaman J (2011) Virus interactions with human signal transduction pathways. Int J Comput Biol Drug Des 4(1):83–105

    Article  Google Scholar 

  128. Rachita HR, Nagarajaram HA (2014) Viral proteins that bridge unconnected proteins and components in the human PPI network. Mol BioSyst 10(9):2448–2458

    Article  Google Scholar 

  129. Dupressoir A, Vernochet C, Bawa O, Harper F, Pierron G, Opolon P, Heidmann T (2009) Syncytin-a knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc Natl Acad Sci 106(29):12127–12132

    Article  Google Scholar 

  130. Jonsson PF, Bates PA (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics 22(18):2291–2297

    Article  Google Scholar 

  131. Wuchty S, Siwo G, Ferdig MT (2010) Viral organization of human proteins. PLoS One 5(8):e11796

    Article  Google Scholar 

  132. Vidal M, Cusick ME, Barabási AL (2011) Interactome networks and human disease. Cell 2144(6):986–998

    Article  Google Scholar 

  133. Jaeger S, Aloy P (2012) From protein interaction networks to novel therapeutic strategies. IUBMB Life 64(6):529–537

    Article  Google Scholar 

  134. Karbalaei R, Allahyari M, Rezaei-Tavirani M, Asadzadeh-Aghdaei H, Zali MR (2018) Protein-protein interaction analysis of Alzheimers disease and NAFLD based on systems biology methods unhide common ancestor pathways. Gastroenterol Hepatol Bed Bench 11(1):27

    Google Scholar 

  135. Azodi MZ, Peyvandi H, Rostami-Nejad M, Safaei A, Rostami K, Vafaee R, Heidari M, Hosseini M, Zali MR (2016) Protein-protein interaction network of celiac disease. Gastroenterol Hepatol Bed Bench 9(4):268

    Google Scholar 

  136. Feng Y, Wang Q, Wang T (2017) Drug target protein-protein interaction networks: a systematic perspective. Biomed Res Int 2017:1289259

    Article  Google Scholar 

  137. Galan-Vasquez E, Perez-Rueda E (2021) A landscape for drug-target interactions based on network analysis. PLoS One 16(3):e0247018

    Article  Google Scholar 

  138. Bertin N, Simonis N, Dupuy D, Cusick ME, Han JD, Fraser HB, Roth FP, Vidal M (2007) Confirmation of organized modularity in the yeast interactome. PLoS Biol 5(6):e153

    Article  Google Scholar 

  139. Acharya D, Dutta TK (2021) Elucidating the network features and evolutionary attributes of intra-and interspecific protein–protein interactions between human and pathogenic bacteria. Sci Rep 11(1):190

    Article  Google Scholar 

  140. Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27(2):199–204

    Article  Google Scholar 

  141. Batada NN, Reguly T, Breitkreutz A, Boucher L, Breitkreutz BJ, Hurst LD, Tyers M (2006) Stratus not altocumulus: a new view of the yeast protein interaction network. PLoS Biol 4(10):e317

    Article  Google Scholar 

  142. Jin G, Zhang S, Zhang XS, Chen L (2007) Hubs with network motifs organize modularity dynamically in the protein-protein interaction network of yeast. PLoS One 2(11):e1207

    Article  Google Scholar 

  143. Biswas K, Acharya D, Podder S, Ghosh TC (2018) Evolutionary rate heterogeneity between multi-and single-interface hubs across human housekeeping and tissue-specific protein interaction network: insights from proteins’ and its partners’ properties. Genomics 110(5):283–290

    Article  Google Scholar 

  144. Kiran M, Nagarajaram HA (2013) Global versus local hubs in human protein–protein interaction network. J Proteome Res 12(12):5436–5446

    Article  Google Scholar 

  145. Kiran M, Nagarajaram HA (2016) Interaction and localization diversities of global and local hubs in human protein–protein interaction networks. Mol BioSyst 12(9):2875–2882

    Article  Google Scholar 

  146. Dyer MD, Murali TM, Sobral BW (2008) The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog 4(2):e32

    Article  Google Scholar 

  147. McDermott JE, Taylor RC, Yoon H, Heffron F (2009) Bottlenecks and hubs in inferred networks are important for virulence in Salmonella typhimurium. J Comput Biol 16(2):169–180

    Article  Google Scholar 

  148. Mitchell HD, Eisfeld AJ, Stratton KG, Heller NC, Bramer LM, Wen J, McDermott JE, Gralinski LE, Sims AC, Le MQ, Baric RS (2019) The role of EGFR in influenza pathogenicity: multiple network-based approaches to identify a key regulator of non-lethal infections. Front Cell Dev Biol 7:200

    Article  Google Scholar 

  149. Goñi J, Esteban FJ, de Mendizábal NV, Sepulcre J, Ardanza-Trevijano S, Agirrezabal I, Villoslada P (2008) A computational analysis of protein-protein interaction networks in neurodegenerative diseases. BMC Syst Biol 2(1):1–10

    Article  Google Scholar 

  150. Nuoroozi G, Mirmotalebisohi SA, Sameni M, Arianmehr Y, Zali H (2021) Deregulation of microRNAs in oral squamous cell carcinoma, a bioinformatics analysis. Gene Rep 24:101241

    Article  Google Scholar 

  151. Hwang WC, Zhang AA, Ramanathan M (2008) Identification of information flow-modulating drug targets: a novel bridging paradigm for drug discovery. Clin Pharmacol Therap 84(5):563–572

    Article  Google Scholar 

  152. Nithya C, Kiran M, Nagarajaram HA (2023) Dissection of hubs and bottlenecks in a protein-protein interaction network. Comput Biol Chem 102:107802

    Article  Google Scholar 

Download references

Acknowledgments

N.C., a registered PhD student at the University of Hyderabad, gratefully acknowledges the Boarding cum Lodging (BBL) fellowship from the University of Hyderabad. H.A.N. gratefully acknowledges the core grant support from the University of Hyderabad. All the authors gratefully acknowledge the SAHAJ-BUILDER support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hampapathalu Adimurthy Nagarajaram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nithya, C., Kiran, M., Nagarajaram, H.A. (2024). Hubs and Bottlenecks in Protein-Protein Interaction Networks. In: Mandal, S. (eds) Reverse Engineering of Regulatory Networks. Methods in Molecular Biology, vol 2719. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3461-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3461-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3460-8

  • Online ISBN: 978-1-0716-3461-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics