Skip to main content

Systems-Wide Site-Specific Analysis of Glycoproteins

  • Protocol
  • First Online:
Mass Spectrometry-Based Proteomics

Abstract

Glycosylation is one of the most common and complex post-translation modifications that influence the structural and functional properties of proteins. Glycoproteins are highly heterogeneous and exhibit site- and protein-specific expression differences. Mass spectrometry in combination with liquid chromatography has emerged as the most powerful tool for the comprehensive characterization of glycosylation. The analysis of intact glycopeptides has emerged as a promising strategy to analyze glycoproteins for their glycan heterogeneity at both protein- and site-specific levels. Nevertheless, intact glycopeptide characterization is challenging as elucidation of the glycan and peptide moieties requires specific sample preparation workflows that, combined with the tandem mass spectrometry approach, enable the identification of single glycopeptide species. In this chapter, we provide a detailed description of the methods that include procedures for (i) proteolytic digestion using specific proteases, (ii) optional glycopeptide enrichment using hydrophilic interaction liquid chromatography, (iii) nano-LC-MS/MS analysis of glycopeptides, and (iv) data analysis for identification of glycopeptides. Together, our workflow provides a framework for the system-wide site-specific analysis of N- and O-glycopeptides derived from complex biological or clinical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACN:

Acetonitrile

CAA:

Chloroacetamide

CID:

Collision-induced dissociation

ETD:

Electron transfer dissociation

ETHcD:

Electron-transfer/higher-energy collision dissociation

EtOH:

Ethanol

FA:

Formic acid

HCD:

Higher-energy collisional dissociation

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

HILIC:

Hydrophilic interaction chromatography

LC:

Liquid chromatography

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

PTMs:

Posttranslational modifications

RT:

Room temperature

SP3:

Single-pot solid-phase-enhanced sample preparation

TFA:

Trifluoroacetic acid

References

  1. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473(1):4–8

    Article  CAS  PubMed  Google Scholar 

  2. Dell A, Galadari A, Sastre F, Hitchen P (2010) Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes. Int J Microbiol 2010:148178. https://doi.org/10.1155/2010/148178

    Article  CAS  PubMed  Google Scholar 

  3. Aebersold R, Agar JN, Amster IJ, Baker MS, Bertozzi CR, Boja ES, Costello CE, Cravatt BF, Fenselau C, Garcia BA, Ge Y, Gunawardena J, Hendrickson RC, Hergenrother PJ, Huber CG, Ivanov AR, Jensen ON, Jewett MC, Kelleher NL, Kiessling LL, Krogan NJ, Larsen MR, Loo JA, Ogorzalek Loo RR, Lundberg E, MacCoss MJ, Mallick P, Mootha VK, Mrksich M, Muir TW, Patrie SM, Pesavento JJ, Pitteri SJ, Rodriguez H, Saghatelian A, Sandoval W, Schluter H, Sechi S, Slavoff SA, Smith LM, Snyder MP, Thomas PM, Uhlen M, Van Eyk JE, Vidal M, Walt DR, White FM, Williams ER, Wohlschlager T, Wysocki VH, Yates NA, Young NL, Zhang B (2018) How many human proteoforms are there? Nat Chem Biol 14(3):206–214. https://doi.org/10.1038/nchembio.2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart G, Etzler ME (2009) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  5. Dell A, Morris HR (2001) Glycoprotein structure determination by mass spectrometry. Science 291(5512):2351–2356

    Article  CAS  PubMed  Google Scholar 

  6. Budnik BA, Lee RS, Steen JA (2006) Global methods for protein glycosylation analysis by mass spectrometry. Biochim Biophys Acta 1764(12):1870–1880. https://doi.org/10.1016/j.bbapap.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  7. van Kooyk Y, Rabinovich GA (2008) Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 9(6):593–601. https://doi.org/10.1038/ni.f.203

    Article  CAS  PubMed  Google Scholar 

  8. Ruddock LW, Molinari M (2006) N-glycan processing in ER quality control. J Cell Sci 119(Pt 21):4373–4380. https://doi.org/10.1242/jcs.03225

    Article  CAS  PubMed  Google Scholar 

  9. Kolarich D, Weber A, Turecek PL, Schwarz HP, Altmann F (2006) Comprehensive glyco-proteomic analysis of human alpha1-antitrypsin and its charge isoforms. Proteomics 6(11):3369–3380. https://doi.org/10.1002/pmic.200500751

    Article  CAS  PubMed  Google Scholar 

  10. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12(4):43R–56R

    Article  CAS  PubMed  Google Scholar 

  11. Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13(7):448–462. https://doi.org/10.1038/nrm3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Varki A, Kornfeld S (2015) Historical background and overview. In: Varki A, Cummings RD et al (eds) Essentials of glycobiology. Cold Spring Harbor, New York, pp 1–18. https://doi.org/10.1101/glycobiology.3e.001

    Chapter  Google Scholar 

  13. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4(3):181–191. https://doi.org/10.1038/nrm1052

    Article  CAS  PubMed  Google Scholar 

  14. Lamriben L, Graham JB, Adams BM, Hebert DN (2016) N-glycan-based ER molecular chaperone and protein quality control system: the calnexin binding cycle. Traffic 17(4):308–326. https://doi.org/10.1111/tra.12358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664. https://doi.org/10.1146/annurev.bi.54.070185.003215

    Article  CAS  PubMed  Google Scholar 

  16. Stanley P, Taniguchi N, Aebi M (2015) N-Glycans. In: Varki A, Cummings RD et al (eds) Essentials of glycobiology. Cold Spring Harbor, New York, pp 99–111. https://doi.org/10.1101/glycobiology.3e.009

    Chapter  Google Scholar 

  17. Hanisch FG (2001) O-glycosylation of the mucin type. Biol Chem 382(2):143–149. https://doi.org/10.1515/BC.2001.022

    Article  CAS  PubMed  Google Scholar 

  18. Jensen PH, Kolarich D, Packer NH (2010) Mucin-type O-glycosylation—putting the pieces together. FEBS J 277(1):81–94. https://doi.org/10.1111/j.1742-4658.2009.07429.x

    Article  CAS  PubMed  Google Scholar 

  19. Ten Hagen KG, Fritz TA, Tabak LA (2003) All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology 13(1):1R–16R. https://doi.org/10.1093/glycob/cwg007

    Article  CAS  PubMed  Google Scholar 

  20. Butkinaree C, Park K, Hart GW (2010) O-linked beta-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta 1800(2):96–106. https://doi.org/10.1016/j.bbagen.2009.07.018

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, Gucek M, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci U S A 105(37):13793–13798. https://doi.org/10.1073/pnas.0806216105

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dwek RA (1995) Glycobiology: “towards understanding the function of sugars”. Biochem Soc Trans 23(1):1–25

    Article  CAS  PubMed  Google Scholar 

  23. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3(2):97–130

    Article  CAS  PubMed  Google Scholar 

  24. Varki A (2014) Biological roles of glycans: two decades later. Glycobiology 24(11):1086–1087

    Google Scholar 

  25. Varki A (2017) Biological roles of glycans. Glycobiology 27(1):3–49. https://doi.org/10.1093/glycob/cww086

    Article  CAS  PubMed  Google Scholar 

  26. Varki A (2006) Nothing in glycobiology makes sense, except in the light of evolution. Cell 126(5):841–845. https://doi.org/10.1016/j.cell.2006.08.022

    Article  CAS  PubMed  Google Scholar 

  27. Landsteiner K, van der Scheer J (1925) On the antigens of red blood corpuscles: the question of lipoid antigens. J Exp Med 41(3):427–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deshpande N, Jensen PH, Packer NH, Kolarich D (2010) GlycoSpectrumScan: fishing glycopeptides from MS spectra of protease digests of human colostrum sIgA. J Proteome Res 9(2):1063–1075. https://doi.org/10.1021/pr900956x

    Article  CAS  PubMed  Google Scholar 

  29. Kolarich D, Weber A, Pabst M, Stadlmann J, Teschner W, Ehrlich H, Schwarz HP, Altmann F (2008) Glycoproteomic characterization of butyrylcholinesterase from human plasma. Proteomics 8(2):254–263. https://doi.org/10.1002/pmic.200700720

    Article  CAS  PubMed  Google Scholar 

  30. Struwe WB, Robinson CV (2019) Relating glycoprotein structural heterogeneity to function—insights from native mass spectrometry. Curr Opin Struct Biol 58:241–248. https://doi.org/10.1016/j.sbi.2019.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carvalho S, Catarino TA, Dias AM, Kato M, Almeida A, Hessling B, Figueiredo J, Gartner F, Sanches JM, Ruppert T, Miyoshi E, Pierce M, Carneiro F, Kolarich D, Seruca R, Yamaguchi Y, Taniguchi N, Reis CA, Pinho SS (2016) Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer. Oncogene 35(13):1619–1631. https://doi.org/10.1038/onc.2015.225

    Article  CAS  PubMed  Google Scholar 

  32. Shade KT, Platzer B, Washburn N, Mani V, Bartsch YC, Conroy M, Pagan JD, Bosques C, Mempel TR, Fiebiger E, Anthony RM (2015) A single glycan on IgE is indispensable for initiation of anaphylaxis. J Exp Med 212(4):457–467. https://doi.org/10.1084/jem.20142182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu D, Struwe WB, Harvey DJ, Ferguson MAJ, Robinson CV (2018) N-glycan microheterogeneity regulates interactions of plasma proteins. Proc Natl Acad Sci U S A 115(35):8763–8768. https://doi.org/10.1073/pnas.1807439115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roushan A, Wilson GM, Kletter D, Sen KI, Tang W, Kil YJ, Carlson E, Bern M (2021) Peak filtering, peak annotation, and wildcard search for glycoproteomics. Mol Cell Proteomics 20:100011. https://doi.org/10.1074/mcp.RA120.002260

    Article  CAS  PubMed  Google Scholar 

  35. Alagesan K, Khilji SK, Kolarich D (2017) It is all about the solvent: on the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment. Anal Bioanal Chem 409(2):529–538. https://doi.org/10.1007/s00216-016-0051-6

    Article  CAS  PubMed  Google Scholar 

  36. Stavenhagen K, Hinneburg H, Thaysen-Andersen M, Hartmann L, Varon Silva D, Fuchser J, Kaspar S, Rapp E, Seeberger PH, Kolarich D (2013) Quantitative mapping of glycoprotein micro-heterogeneity and macro-heterogeneity: an evaluation of mass spectrometry signal strengths using synthetic peptides and glycopeptides. J Mass Spectrom 48(6):627–639. https://doi.org/10.1002/jms.3210

    Article  CAS  PubMed  Google Scholar 

  37. Riley NM, Bertozzi CR, Pitteri SJ (2020) A pragmatic guide to enrichment strategies for mass spectrometry-based glycoproteomics. Mol Cell Proteomics 20:100029. https://doi.org/10.1074/mcp.R120.002277

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hinneburg H, Stavenhagen K, Schweiger-Hufnagel U, Pengelley S, Jabs W, Seeberger PH, Silva DV, Wuhrer M, Kolarich D (2016) The art of destruction: optimizing collision energies in quadrupole-time of flight (Q-TOF) instruments for glycopeptide-based glycoproteomics. J Am Soc Mass Spectrom 27(3):507–519. https://doi.org/10.1007/s13361-015-1308-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dodds ED (2012) Gas-phase dissociation of glycosylated peptide ions. Mass Spectrom Rev 31(6):666–682. https://doi.org/10.1002/mas.21344

    Article  CAS  PubMed  Google Scholar 

  40. Kolli V, Dodds ED (2014) Energy-resolved collision-induced dissociation pathways of model N-linked glycopeptides: implications for capturing glycan connectivity and peptide sequence in a single experiment. Analyst 139(9):2144–2153. https://doi.org/10.1039/c3an02342g

    Article  CAS  PubMed  Google Scholar 

  41. Jebanathirajah J, Steen H, Roepstorff P (2003) Using optimized collision energies and high resolution, high accuracy fragment ion selection to improve glycopeptide detection by precursor ion scanning. J Am Soc Mass Spectrom 14(7):777–784. https://doi.org/10.1016/S1044-0305(03)00263-0

    Article  CAS  PubMed  Google Scholar 

  42. Vékey K, Ozohanics O, Tóth E, Jekő A, Révész Á, Krenyácz J, Drahos L (2013) Fragmentation characteristics of glycopeptides. Int J Mass Spectrom 345–347:71–79. https://doi.org/10.1016/j.ijms.2012.08.031

    Article  CAS  Google Scholar 

  43. Alagesan K, Hinneburg H, Seeberger PH, Silva DV, Kolarich D (2019) Glycan size and attachment site location affect electron transfer dissociation (ETD) fragmentation and automated glycopeptide identification. Glycoconj J 36(6):487–493. https://doi.org/10.1007/s10719-019-09888-w

    Article  CAS  PubMed  Google Scholar 

  44. Riley NM, Malaker SA, Bertozzi CR (2020) Electron-based dissociation is needed for O-glycopeptides derived from OpeRATOR proteolysis. Anal Chem 92(22):14878–14884. https://doi.org/10.1021/acs.analchem.0c02950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Riley NM, Malaker SA, Driessen MD, Bertozzi CR (2020) Optimal dissociation methods differ for N- and O-glycopeptides. J Proteome Res 19(8):3286–3301. https://doi.org/10.1021/acs.jproteome.0c00218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Caval T, Zhu J, Heck AJR (2019) Simply extending the mass range in electron transfer higher energy collisional dissociation increases confidence in N-glycopeptide identification. Anal Chem 91(16):10401–10406. https://doi.org/10.1021/acs.analchem.9b02125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu H, Khatri K, Zaia J (2017) Algorithms and design strategies towards automated glycoproteomics analysis. Mass Spectrom Rev 36(4):475–498. https://doi.org/10.1002/mas.21487

    Article  CAS  PubMed  Google Scholar 

  48. Cao W, Liu M, Kong S, Wu M, Zhang Y, Yang P (2021) Recent advances in software tools for more generic and precise intact glycopeptide analysis. Mol Cell Proteom 20:100060. https://doi.org/10.1074/mcp.R120.002090

    Article  CAS  Google Scholar 

  49. Kawahara R, Chernykh A, Alagesan K, Bern M, Cao W, Chalkley RJ, Cheng K, Choo MS, Edwards N, Goldman R, Hoffmann M, Hu Y, Huang Y, Kim JY, Kletter D, Liquet B, Liu M, Mechref Y, Meng B, Neelamegham S, Nguyen-Khuong T, Nilsson J, Pap A, Park GW, Parker BL, Pegg CL, Penninger JM, Phung TK, Pioch M, Rapp E, Sakalli E, Sanda M, Schulz BL, Scott NE, Sofronov G, Stadlmann J, Vakhrushev SY, Woo CM, Wu HY, Yang P, Ying W, Zhang H, Zhang Y, Zhao J, Zaia J, Haslam SM, Palmisano G, Yoo JS, Larson G, Khoo KH, Medzihradszky KF, Kolarich D, Packer NH, Thaysen-Andersen M (2021) Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nat Methods 18(11):1304–1316. https://doi.org/10.1038/s41592-021-01309-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roushan A, Wilson GM, Kletter D, Sen KI, Tang W, Kil YJ, Carlson E, Bern M (2020) Peak filtering, peak annotation, and wildcard search for glycoproteomics. Mol Cell Proteomics 20:100011. https://doi.org/10.1074/mcp.RA120.002260

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Max Planck Society for the funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathirvel Alagesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alagesan, K., Charpentier, E. (2023). Systems-Wide Site-Specific Analysis of Glycoproteins. In: Gevaert, K. (eds) Mass Spectrometry-Based Proteomics. Methods in Molecular Biology, vol 2718. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3457-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3457-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3456-1

  • Online ISBN: 978-1-0716-3457-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics