Skip to main content

Thermal Proteome Profiling for Drug Target Identification and Probing of Protein States

  • Protocol
  • First Online:
Mass Spectrometry-Based Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2718))

Abstract

Proteins are central drivers of physiological and pathological processes in the cell. Methods evaluating protein functional states are therefore vital to fundamental research as well as drug discovery. Thermal proteome profiling (TPP) to this date constitutes the only approach that permits examining protein states in live cells, under native conditions and at a proteome-wide scale. TPP harnesses ligand/perturbation-induced changes in protein thermal stability, which are monitored by multiplexed quantitative mass spectrometry. In this chapter, we describe a modular experimental workflow for TPP experiments using live cells or crude cell extracts. We provide the tools to perform different TPP formats, i.e., temperature range experiments, TPP-TR; isothermal compound titrations, TPP-CCR; and a combination thereof, 2D-TPP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanash S (2003) Disease proteomics. Nature 422:226–232

    Article  CAS  PubMed  Google Scholar 

  2. Pantoliano MW, Petrella EC, Kwasnoski JD et al (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen 6:429–440

    Article  CAS  PubMed  Google Scholar 

  3. Martinez Molina D, Jafari R, Ignatushchenko M et al (2013) Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341:84–87

    Article  PubMed  Google Scholar 

  4. Savitski MM, Reinhard FB, Franken H et al (2014) Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346:1255784

    Article  PubMed  Google Scholar 

  5. Mateus A, Kurzawa N, Perrin J et al (2021) Drug target identification in tissues by thermal proteome profiling. Annu Rev Pharmacol Toxicol 62:465

    Article  PubMed  Google Scholar 

  6. Sridharan S, Günthner I, Becher I et al (2019) Target discovery using thermal proteome profiling. In: Mass spectrometry-based chemical proteomics. Wiley, Hoboken, pp 267–291

    Chapter  Google Scholar 

  7. Mateus A, Kurzawa N, Becher I et al (2020) Thermal proteome profiling for interrogating protein interactions. Mol Syst Biol 16:e9232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dai L, Prabhu N, Yu LY et al (2019) Horizontal cell biology: monitoring global changes of protein interaction states with the proteome-wide cellular thermal shift assay (CETSA). Annu Rev Biochem 88:383–408

    Article  CAS  PubMed  Google Scholar 

  9. Franken H, Mathieson T, Childs D et al (2015) Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat Protoc 10:1567–1593

    Article  CAS  PubMed  Google Scholar 

  10. Sridharan S, Kurzawa N, Werner T et al (2019) Proteome-wide solubility and thermal stability profiling reveals distinct regulatory roles for ATP. Nat Commun 10:1155

    Article  PubMed  PubMed Central  Google Scholar 

  11. Becher I, Werner T, Doce C et al (2016) Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. Nat Chem Biol 12:908–910

    Article  CAS  PubMed  Google Scholar 

  12. Thompson A, Wolmer N, Koncarevic S et al (2019) TMTpro: design, synthesis, and initial evaluation of a proline-based isobaric 16-plex tandem mass tag reagent set. Anal Chem 91:15941–15950

    Article  CAS  PubMed  Google Scholar 

  13. Li J, Van Vranken JG, Pontano Vaites L et al (2020) TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat Methods 17:399–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li J, Cai Z, Bomgarden RD et al (2021) TMTpro-18plex: the expanded and complete set of TMTpro reagents for sample multiplexing. J Proteome Res 20:2964–2972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zinn N, Werner T, Doce C et al (2021) Improved proteomics-based drug mechanism-of-action studies using 16-plex isobaric mass tags. J Proteome Res 20:1792–1801

    Article  CAS  PubMed  Google Scholar 

  16. Miettinen TP, Bjorklund M (2014) NQO2 is a reactive oxygen species generating off-target for acetaminophen. Mol Pharm 11:4395–4404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jafari R, Almqvist H, Axelsson H et al (2014) The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc 9:2100–2122

    Article  CAS  PubMed  Google Scholar 

  18. Hughes CS, Moggridge S, Muller T et al (2019) Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat Protoc 14:68–85

    Article  CAS  PubMed  Google Scholar 

  19. Moggridge S, Sorensen PH, Morin GB et al (2018) Extending the compatibility of the SP3 paramagnetic bead processing approach for proteomics. J Proteome Res 17:1730–1740

    Article  CAS  PubMed  Google Scholar 

  20. Cox J, Michalski A, Mann M (2011) Software lock mass by two-dimensional minimization of peptide mass errors. J Am Soc Mass Spectrom 22:1373–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Savitski MM, Mathieson T, Zinn N et al (2013) Measuring and managing ratio compression for accurate iTRAQ/TMT quantification. J Proteome Res 12:3586–3598

    Article  CAS  PubMed  Google Scholar 

  22. Savitski MM, Zinn N, Faelth-Savitski M et al (2018) Multiplexed proteome dynamics profiling reveals mechanisms controlling protein homeostasis. Cell 173:260–274.e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Savitski MM, Sweetman G, Askenazi M et al (2011) Delayed fragmentation and optimized isolation width settings for improvement of protein identification and accuracy of isobaric mass tag quantification on Orbitrap-type mass spectrometers. Anal Chem 83:8959–8967

    Article  CAS  PubMed  Google Scholar 

  24. Kurzawa N, Becher I, Sridharan S et al (2020) A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles. Nat Commun 11:5783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kalxdorf M, Gunthner I, Becher I et al (2021) Cell surface thermal proteome profiling tracks perturbations and drug targets on the plasma membrane. Nat Methods 18:84–91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Bantscheff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sauer, P., Bantscheff, M. (2023). Thermal Proteome Profiling for Drug Target Identification and Probing of Protein States. In: Gevaert, K. (eds) Mass Spectrometry-Based Proteomics. Methods in Molecular Biology, vol 2718. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3457-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3457-8_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3456-1

  • Online ISBN: 978-1-0716-3457-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics