Skip to main content

Targeted Profiling of Protein Phosphorylation in Plants

  • Protocol
  • First Online:
Mass Spectrometry-Based Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2718))

Abstract

Proteins are crucial for controlling different cellular processes by perceiving and converting external environmental cues into cellular responses. Therefore, regulation of protein activities is pivotal for the development and survival of an organism. This is often mediated by posttranslational modifications, which usually are carried out on specific residues of a target protein by a “writer” protein. The (reversible) modifications of different residues may lead to different signaling outputs. In the case of protein phosphorylation, one of the most common posttranslational modifications, this writer protein is a protein kinase. In this chapter, we report a comprehensive and versatile workflow to identify the phosphorylation profile of a target protein in plants from a putative kinase-target pair by combining an in planta phosphorylation assay and mass spectrometry analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vu LD, Gevaert K, De Smet I (2018) Protein language: post-translational modifications talking to each other. Trends Plant Sci 23:1068–1080. https://doi.org/10.1016/j.tplants.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  2. Matthews HR (1995) Protein kinases and phosphatases that act on histidine, lysine, or arginine residues in eukaryotic proteins: a possible regulator of the mitogen-activated protein kinase cascade. Pharmacol Ther 67:323–350. https://doi.org/10.1016/0163-7258(95)00020-8

    Article  CAS  PubMed  Google Scholar 

  3. Jagodzik P, Tajdel-Zielinska M, Ciesla A et al (2018) Mitogen-activated protein kinase cascades in plant hormone signaling. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.01387

  4. Tena G, Boudsocq M, Sheen J (2011) Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol 14:519–529. https://doi.org/10.1016/j.pbi.2011.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu J-K (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324. https://doi.org/10.1016/j.cell.2016.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zulawski M, Schulze G, Braginets R et al (2014) The Arabidopsis Kinome: phylogeny and evolutionary insights into functional diversification. BMC Genomics 15:548. https://doi.org/10.1186/1471-2164-15-548

    Article  PubMed  PubMed Central  Google Scholar 

  7. Van Leene J, Han C, Gadeyne A et al (2019) Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nat Plants 5:316–327. https://doi.org/10.1038/s41477-019-0378-z

    Article  CAS  PubMed  Google Scholar 

  8. Taylor I, Wang Y, Seitz K et al (2016) Analysis of phosphorylation of the receptor-like protein kinase HAESA during Arabidopsis floral abscission. PLoS One 11:e0147203. https://doi.org/10.1371/journal.pone.0147203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hastie CJ, McLauchlan HJ, Cohen P (2006) Assay of protein kinases using radiolabeled ATP: a protocol. Nat Protoc 1:968–971. https://doi.org/10.1038/nprot.2006.149

    Article  CAS  PubMed  Google Scholar 

  10. Jiang Y, Han B, Zhang H et al (2019) MAP4K4 associates with BIK1 to regulate plant innate immunity. EMBO Rep 20. https://doi.org/10.15252/embr.201947965

  11. Woodgett JR, Gould KL, Hunter T (1986) Substrate specificity of protein kinase C. Use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements. Eur J Biochem 161:177–184. https://doi.org/10.1111/j.1432-1033.1986.tb10139.x

    Article  CAS  PubMed  Google Scholar 

  12. Modi V, Dunbrack RL (2019) Defining a new nomenclature for the structures of active and inactive kinases. Proc Natl Acad Sci 116:6818–6827. https://doi.org/10.1073/pnas.1814279116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beenstock J, Mooshayef N, Engelberg D (2016) How do protein kinases take a selfie (autophosphorylate)? Trends Biochem Sci 41:938–953. https://doi.org/10.1016/j.tibs.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  14. Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877–9877. https://doi.org/10.1093/nar/16.20.9877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vu LD, Stes E, Van Bel M et al (2016) Up-to-date workflow for plant (phospho)proteomics identifies differential drought-responsive phosphorylation events in maize leaves. J Proteome Res 15:4304–4317. https://doi.org/10.1021/acs.jproteome.6b00348

    Article  CAS  PubMed  Google Scholar 

  16. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319. https://doi.org/10.1038/nprot.2016.136

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ive De Smet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xu, X., Gevaert, K., De Smet, I., Vu, L.D. (2023). Targeted Profiling of Protein Phosphorylation in Plants. In: Gevaert, K. (eds) Mass Spectrometry-Based Proteomics. Methods in Molecular Biology, vol 2718. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3457-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3457-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3456-1

  • Online ISBN: 978-1-0716-3457-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics