Skip to main content

Phage Immunoprecipitation Sequencing (PhIP-Seq) for Analyzing Antibody Epitope Repertoires Against Food Antigens

  • Protocol
  • First Online:
Food Allergens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2717))

Abstract

While thousands of food and environmental allergens have been reported, conventional methods for allergy testing typically rely on measuring immunoglobulin E (IgE) binding against panels of dozens to hundreds of antigens. Beyond IgE, also the specificity of other Ig (sub-)classes such as IgG4, has gained interest because of a potential protective role toward allergy.

Phage immunoprecipitation sequencing (PhIP-Seq) allows to study hundreds of thousands of rationally selected peptide antigens and to resolve binding specificities of different Ig classes. This technology combines synthetic DNA libraries encoding antigens, with the display on the surface of T7 bacteriophages and next-generation sequencing (NGS) for quantitative readouts. Thereby binding of entire Ig repertoires can be measured to detect the exact epitopes of food allergens and to study potential cross-reactivity.

In this chapter, we provide a summary of both the key experimental steps and various strategies for analyzing PhIP-Seq datasets, as well as comparing the advantages and disadvantages of this methodology for measuring antibody responses against food antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohan D, Wansley DL, Sie BM et al (2018) PhIP-Seq characterization of serum antibodies using oligonucleotide-encoded peptidomes. Nat Protoc 13(9):1958–1978. https://doi.org/10.1038/s41596-018-0025-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Larman HB, Zhao Z, Laserson U et al (2011) Application of a synthetic human proteome to autoantigen discovery through PhIP-Seq. Nat Biotechnol 29:535. https://doi.org/10.1038/NBT.1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Larman HB, Laserson U, Querol L et al (2013) PhIP-Seq characterization of autoantibodies from patients with multiple sclerosis, type 1 diabetes and rheumatoid arthritis. J Autoimmun 43. https://doi.org/10.1016/j.jaut.2013.01.013

  4. Xu GJ, Kula T, Xu Q et al (2015) Comprehensive serological profiling of human populations using a synthetic human virome. Science 1979:348. https://doi.org/10.1126/science.aaa0698

    Article  CAS  Google Scholar 

  5. Mina MJ, Kula T, Leng Y et al (2019) Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science 1979:366. https://doi.org/10.1126/science.aay6485

    Article  CAS  Google Scholar 

  6. Klompus S, Leviatan S, Vogl T et al (2021) Cross-reactive antibodies against human coronaviruses and the animal coronavirome suggest diagnostics for future zoonotic spillovers. Sci Immunol 6. https://doi.org/10.1126/sciimmunol.abe9950

  7. Shrock E, Fujimura E, Kula T et al (2020) Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science 2020:370. https://doi.org/10.1126/science.abd4250

  8. Vogl T, Klompus S, Leviatan S et al (2021) Population-wide diversity and stability of serum antibody epitope repertoires against human microbiota. Nat Med 27. https://doi.org/10.1038/s41591-021-01409-3

  9. Chen G, Shrock EL, Li MZ et al (2021) High-resolution epitope mapping by AllerScan reveals relationships between IgE and IgG repertoires during peanut oral immunotherapy. Cell Rep Med 2. https://doi.org/10.1016/j.xcrm.2021.100410

  10. Monaco DR, Sie BM, Nirschl TR et al (2021) Profiling serum antibodies with a pan allergen phage library identifies key wheat allergy epitopes. Nat Commun 12:1–10. https://doi.org/10.1038/s41467-020-20622-1

    Article  CAS  Google Scholar 

  11. Leviatan S, Vogl T, Klompus S et al (2022) Allergenic food protein consumption is associated with systemic IgG antibody responses in non-allergic individuals. Immunity. https://doi.org/10.1016/J.IMMUNI.2022.11.004

  12. Qi H, Xue J b, Lai D y et al (2022) Current advances in antibody-based serum biomarker studies: from protein microarray to phage display. Proteomics Clin Appl:e2100098. https://doi.org/10.1002/PRCA.202100098

  13. Credle JJ, Gunn J, Sangkhapreecha P et al (2022) Unbiased discovery of autoantibodies associated with severe COVID-19 via genome-scale self-assembled DNA-barcoded protein libraries. Nat Biomed Eng 6(8):992–1003. https://doi.org/10.1038/s41551-022-00925-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu GJ, Shah AA, Li MZ et al (2016) Systematic autoantigen analysis identifies a distinct subtype of scleroderma with coincident cancer. Proc Natl Acad Sci 113:E7526–E7534. https://doi.org/10.1073/PNAS.1615990113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Faix PH, Burg MA, Gonzales M et al (2004) Phage display of cDNA libraries: enrichment of cDNA expression using open reading frame selection. BioTechniques 36:1018–1029. https://doi.org/10.2144/04366RR03

    Article  CAS  PubMed  Google Scholar 

  16. Vazquez SE, Mann SA, Bodansky A et al (2022) Autoantibody discovery across monogenic, acquired, and COVID19-associated autoimmunity with scalable PhIP-Seq. elife 11. https://doi.org/10.7554/ELIFE.78550

  17. Venkataraman T, Valencia C, Mangino M et al (2022) Analysis of antibody binding specificities in twin and SNP-genotyped cohorts reveals that antiviral antibody epitope selection is a heritable trait. Immunity 55:174–184.e5. https://doi.org/10.1016/j.immuni.2021.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koch MA, Reiner GL, Lugo KA et al (2016) Maternal IgG and IgA antibodies dampen mucosal T helper cell responses in early life. Cell 165:827–841. https://doi.org/10.1016/J.CELL.2016.04.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilmore JR, Gaudette BT, Gomez Atria D et al (2018) Commensal microbes induce serum IgA responses that protect against polymicrobial sepsis. Cell Host Microbe 23:302–311.e3. https://doi.org/10.1016/J.CHOM.2018.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moor K, Fadlallah J, Toska A et al (2016) Analysis of bacterial-surface-specific antibodies in body fluids using bacterial flow cytometry. Nat Protoc 11(8):1531–1553. https://doi.org/10.1038/nprot.2016.091

    Article  PubMed  Google Scholar 

  21. Li H, Limenitakis JP, Greiff V et al (2020) Mucosal or systemic microbiota exposures shape the B cell repertoire. Nature 584(7820):274–278. https://doi.org/10.1038/s41586-020-2564-6

    Article  CAS  PubMed  Google Scholar 

  22. Angkeow JW, Monaco DR, Chen A et al (2022) Phage display of environmental protein toxins and virulence factors reveals the prevalence, persistence, and genetics of antibody responses. Immunity 55:1051–1066.e4. https://doi.org/10.1016/J.IMMUNI.2022.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gupta RS, Springston EE, Warrier MR et al (2011) The prevalence, severity, and distribution of childhood food allergy in the United States. Pediatrics 128:e9–e17. https://doi.org/10.1542/PEDS.2011-0204

    Article  PubMed  Google Scholar 

  24. Gupta RS, Warren CM, Smith BM et al (2019) Prevalence and severity of food allergies among US adults. JAMA Netw Open 2:e185630–e185630. https://doi.org/10.1001/JAMANETWORKOPEN.2018.5630

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yu W, Freeland DMH, Nadeau KC (2016) Food allergy: immune mechanisms, diagnosis and immunotherapy. Nat Rev Immunol 16(12):751–765. https://doi.org/10.1038/nri.2016.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Florsheim EB, Sullivan ZA, Khoury-Hanold W, Medzhitov R (2021) Food allergy as a biological food quality control system. Cell 184:1440–1454. https://doi.org/10.1016/J.CELL.2020.12.007

    Article  CAS  PubMed  Google Scholar 

  27. DunnGalvin A, Hourihane JOB, Frewer L et al (2006) Incorporating a gender dimension in food allergy research: a review. Allergy 61:1336–1343. https://doi.org/10.1111/J.1398-9995.2006.01181.X

    Article  CAS  PubMed  Google Scholar 

  28. Sikorska-Szaflik H, Sozańska B (2021) Primary prevention of food allergy—environmental protection beyond diet. Nutrients 13:2025. https://doi.org/10.3390/NU13062025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang YJ, Marsland BJ, Bunyavanich S et al (2017) The microbiome in allergic disease: Current understanding and future opportunities-2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. J Allergy Clin Immunol 139:1099–1110. https://doi.org/10.1016/J.JACI.2017.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  30. Savage JH, Lee-Sarwar KA, Sordillo J et al (2018) A prospective microbiome-wide association study of food sensitization and food allergy in early childhood. Allergy 73:145–152. https://doi.org/10.1111/ALL.13232

    Article  CAS  PubMed  Google Scholar 

  31. Kostara M, Chondrou V, Sgourou A et al (2020) HLA polymorphisms and food allergy predisposition. J Pediatr Genet 09:077–086. https://doi.org/10.1055/S-0040-1708521

    Article  Google Scholar 

  32. Carter CA, Frischmeyer-Guerrerio PA (2018) The genetics of food allergy. Curr Allergy Asthma Rep 18:1–9. https://doi.org/10.1007/S11882-018-0756-Z/TABLES/1

    Article  CAS  Google Scholar 

  33. Shamji MH, Valenta R, Jardetzky T et al (2021) The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy 76:3627–3641. https://doi.org/10.1111/ALL.14908

    Article  CAS  PubMed  Google Scholar 

  34. Konstantinou GN, Nowak-Wegrzyn A, Bencharitiwong R et al (2014) Egg-white-specific IgA and IgA2 antibodies in egg-allergic children: is there a role in tolerance induction? Pediatr Allergy Immunol 25:64. https://doi.org/10.1111/PAI.12143

    Article  PubMed  Google Scholar 

  35. Kukkonen K, Kuitunen M, Haahtela T et al (2010) High intestinal IgA associates with reduced risk of IgE-associated allergic diseases. Pediatr Allergy Immunol 21:67–73. https://doi.org/10.1111/J.1399-3038.2009.00907.X

    Article  PubMed  Google Scholar 

  36. Zinkhan S, Thoms F, Augusto G et al (2022) On the role of allergen-specific IgG subclasses for blocking human basophil activation. Front Immunol 13:5876. https://doi.org/10.3389/FIMMU.2022.892631/BIBTEX

    Article  Google Scholar 

  37. Burton OT, Logsdon SL, Zhou JS et al (2014) Oral immunotherapy induces IgG antibodies that act through FcγRIIb to suppress IgE-mediated hypersensitivity. J Allergy Clin Immunol 134:1310–1317.e6. https://doi.org/10.1016/J.JACI.2014.05.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fleischer DM, Bock SA, Spears GC et al (2011) Oral food challenges in children with a diagnosis of food allergy. J Pediatr 158:578–583.e1. https://doi.org/10.1016/J.JPEDS.2010.09.027

    Article  PubMed  Google Scholar 

  39. Heinzerling L, Mari A, Bergmann KC et al (2013) The skin prick test – European standards. Clin Transl Allergy 3:3. https://doi.org/10.1186/2045-7022-3-3

    Article  PubMed  PubMed Central  Google Scholar 

  40. Glaumann S, Lilja G, Nopp A, Nilsson C (2020) Positive Phadiatop Infant (Phinf) can predict allergic disease during childhood. Pediatr Allergy Immunol 31:994–996. https://doi.org/10.1111/PAI.13266

    Article  PubMed  Google Scholar 

  41. Datema MR, Eller E, Zwinderman AH et al (2019) Ratios of specific IgG4 over IgE antibodies do not improve prediction of peanut allergy nor of its severity compared to specific IgE alone. Clin Exp Allergy 49:216. https://doi.org/10.1111/CEA.13286

    Article  CAS  PubMed  Google Scholar 

  42. Santos AF, du Toit G, O’Rourke C et al (2020) Biomarkers of severity and threshold of allergic reactions during oral peanut challenges. J Allergy Clin Immunol 146:344–355. https://doi.org/10.1016/J.JACI.2020.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Santos AF, Couto-Francisco N, Bécares N et al (2018) A novel human mast cell activation test for peanut allergy. J Allergy Clin Immunol 142:689–691.e9. https://doi.org/10.1016/j.jaci.2018.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim EH, Bird JA, Kulis M et al (2011) Sublingual immunotherapy for peanut allergy: clinical and immunologic evidence of desensitization. J Allergy Clin Immunol 127:640–646.e1. https://doi.org/10.1016/J.JACI.2010.12.1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. LeviatanID S, KalkaID IN, Vogl T et al (2022) BIPS—A code base for designing and coding of a Phage ImmunoPrecipitation Oligo Library. PLoS Comput Biol 18:e1010663. https://doi.org/10.1371/JOURNAL.PCBI.1010663

    Article  Google Scholar 

  46. Tiu CK, Zhu F, Wang LF, de Alwis R (2022) Phage ImmunoPrecipitation Sequencing (PhIP-Seq): the promise of high throughput serology. Pathogens 11:568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuan T, Mohan D, Laserson U et al (2018) Improved analysis of phage ImmunoPrecipitation sequencing (PhIP-Seq) data using a Z-score algorithm. https://doi.org/10.1101/285916

  48. Chen A, Kammers K, Larman HB et al (2022) Detecting and quantifying antibody reactivity in PhIP-Seq data with BEER. Bioinformatics 38:4647–4649. https://doi.org/10.1093/bioinformatics/btac555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527. https://doi.org/10.1038/nbt.3519

    Article  CAS  PubMed  Google Scholar 

  51. Hasan MR, Rahman M, Khan T et al (2021) Virome-wide serological profiling reveals association of herpesviruses with obesity. Sci Rep 11. https://doi.org/10.1038/s41598-021-82213-4

  52. Monaco DR, Sv K, Breitwieser FP et al (2022) Deconvoluting virome-wide antibody epitope reactivity profiles. EBioMedicine. 2022(75):103747. https://doi.org/10.1016/j.ebiom.2021.103747

    Article  CAS  Google Scholar 

  53. Heitzer E, Ulz P, Belic J et al (2013) Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. Genome Med 5. https://doi.org/10.1186/gm434

  54. Hessl D, Nguyen D, Green C et al (2009) A solution to limitations of cognitive testing in children with intellectual disabilities: the case of fragile X syndrome. J Neurodev Disord 1:33–45. https://doi.org/10.1007/s11689-008-9001-8

    Article  PubMed  Google Scholar 

  55. Kranzusch R, Aus Dem Siepen F, Wiesemann S et al (2020) Z-score mapping for standardized analysis and reporting of cardiovascular magnetic resonance modified Look-Locker inversion recovery (MOLLI) T1 data: Normal behavior and validation in patients with amyloidosis. J Cardiovasc Magn Reson 22. https://doi.org/10.1186/s12968-019-0595-7

  56. van Verk MC, Hickman R, Pieterse CMJ, van Wees SCM (2013) RNA-Seq: revelation of the messengers. Trends Plant Sci 18(4):175–179

    Article  PubMed  Google Scholar 

  57. Shrock EL, Shrock CL, Elledge SJ (2022) VirScan: high-throughput profiling of antiviral antibody epitopes. Bio Protoc 12. https://doi.org/10.21769/BIOPROTOC.4464

  58. Bourgonje RA (2021) In-depth characterization of the serum antibody epitope repertoire in inflammatory bowel disease using phage-displayed immunoprecipitation sequencing. https://doi.org/10.1101/2021.12.07.471581

  59. Román-Meléndez GD, Monaco DR, Montagne JM et al (2021) Citrullination of a phage-displayed human peptidome library reveals the fine specificities of rheumatoid arthritis-associated autoantibodies. EBioMedicine 71. https://doi.org/10.1016/J.EBIOM.2021.103506

  60. Forsström B, Bisławska Axnäs B, Rockberg J et al (2015) Dissecting antibodies with regards to linear and conformational epitopes. PLoS One 10:e0121673. https://doi.org/10.1371/JOURNAL.PONE.0121673

    Article  PubMed  PubMed Central  Google Scholar 

  61. Berglund L, Andrade J, Odeberg J, Uhlén M (2008) The epitope space of the human proteome. Protein Sci 17:606–613. https://doi.org/10.1110/PS.073347208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bernard H, Guillon B, Drumare MF et al (2015) Allergenicity of peanut component Ara h 2: contribution of conformational versus linear hydroxyproline-containing epitopes. J Allergy Clin Immunol 135:1267–1274.e8. https://doi.org/10.1016/J.JACI.2014.10.025

    Article  CAS  PubMed  Google Scholar 

  63. Trampert DC, Hubers LM, van de Graaf SFJ, Beuers U (2018) On the role of IgG4 in inflammatory conditions: lessons for IgG4-related disease. Biochim Biophys Acta (BBA) - Mol Basis Dis 1864:1401–1409. https://doi.org/10.1016/J.BBADIS.2017.07.038

    Article  CAS  Google Scholar 

  64. Wang J, Barker K, Steel J et al (2013) A versatile protein microarray platform enabling antibody profiling against denatured proteins. Proteomics Clin Appl 7:378. https://doi.org/10.1002/PRCA.201200062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Neiman M, Hellström C, Just D et al (2019) Individual and stable autoantibody repertoires in healthy individuals. Autoimmunity 52:1–11. https://doi.org/10.1080/08916934.2019.1581774/SUPPL_FILE/IAUT_A_1581774_SM6710.DOCX

    Article  CAS  PubMed  Google Scholar 

  66. Liu Z, Coghill AE, Pfeiffer RM et al (2018) Patterns of interindividual variability in the antibody repertoire targeting proteins across the Epstein-Barr virus proteome. J Infect Dis 217:1923–1931. https://doi.org/10.1093/INFDIS/JIY122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lei Q, Li Y, Hou H-Y et al (2021) Antibody dynamics to SARS-CoV-2 in asymptomatic COVID-19 infections. Allergy 76:551–561. https://doi.org/10.1111/ALL.14622

    Article  CAS  PubMed  Google Scholar 

  68. Jiang H w, Li Y, Zhang H n et al (2020) SARS-CoV-2 proteome microarray for global profiling of COVID-19 specific IgG and IgM responses. Nat Commun 11(1):1–11. https://doi.org/10.1038/s41467-020-17488-8

    Article  CAS  Google Scholar 

  69. Li Y, Ma M l, Lei Q et al (2021) Linear epitope landscape of the SARS-CoV-2 Spike protein constructed from 1,051 COVID-19 patients. Cell Rep 34:108915. https://doi.org/10.1016/J.CELREP.2021.108915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jeong JS, Jiang L, Albino E et al (2012) Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Mol Cell Proteomics 11:1–10. https://doi.org/10.1074/MCP.O111.016253

    Article  Google Scholar 

  71. Merbl Y, Kirschner MW (2014) Post-Translational Modification Profiling – a high-content assay for identifying protein modifications in mammalian cellular systems. Curr Protoc Protein Sci / editorial board, John E Coligan. [et al] 77:27.8.1. https://doi.org/10.1002/0471140864.PS2708S77

    Article  Google Scholar 

  72. Pavoni E, Vaccaro P, Pucci A et al (2004) Identification of a panel of tumor-associated antigens from breast carcinoma cell lines, solid tumors and testis cDNA libraries displayed on lambda phage. BMC Cancer 4:1–10. https://doi.org/10.1186/1471-2407-4-78/FIGURES/5

    Article  Google Scholar 

  73. Minenkova O, Pucci A, Pavoni E et al (2003) Identification of tumor-associated antigens by screening phage-displayed human cDNA libraries with sera from tumor patients. Int J Cancer 106:534–544. https://doi.org/10.1002/IJC.11269

    Article  CAS  PubMed  Google Scholar 

  74. Sioud M, Hansen MH (2001) Profiling the immune response in patients with breast cancer by phage-displayed cDNA libraries. https://doi.org/10.1002/1521-4141

  75. Teixeira AAR, Carnero LR, Kuramoto A et al (2021) A refined genome phage display methodology delineates the human antibody response in patients with Chagas disease. iScience 24:102540. https://doi.org/10.1016/J.ISCI.2021.102540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Crameri R, Kodzius R (2012) The powerful combination of phage surface display of cDNA libraries and high throughput screening. Comb Chem High Throughput Screen 4:145–155. https://doi.org/10.2174/1386207013331237

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Vogl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Filimonova, I., Innocenti, G., Vogl, T. (2024). Phage Immunoprecipitation Sequencing (PhIP-Seq) for Analyzing Antibody Epitope Repertoires Against Food Antigens. In: Cabanillas, B. (eds) Food Allergens. Methods in Molecular Biology, vol 2717. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3453-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3453-0_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3452-3

  • Online ISBN: 978-1-0716-3453-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics