Skip to main content

Accelerating the Discovery and Design of Antimicrobial Peptides with Artificial Intelligence

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Abstract

Peptides modulate many processes of human physiology targeting ion channels, protein receptors, or enzymes. They represent valuable starting points for the development of new biologics against communicable and non-communicable disorders. However, turning native peptide ligands into druggable materials requires high selectivity and efficacy, predictable metabolism, and good safety profiles. Machine learning models have gradually emerged as cost-effective and time-saving solutions to predict and generate new proteins with optimal properties. In this chapter, we will discuss the evolution and applications of predictive modeling and generative modeling to discover and design safe and effective antimicrobial peptides. We will also present their current limitations and suggest future research directions, applicable to peptide drug design campaigns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ (2020) Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 19:311–332. https://doi.org/10.1038/s41573-019-0058-8

    Article  CAS  PubMed  Google Scholar 

  2. Bowdish DME, Davidson DJ, Scott MG, Hancock REW (2005) Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother 49:1727–1732. https://doi.org/10.1128/AAC.49.5.1727-1732.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Franco OL (2011) Peptide promiscuity: an evolutionary concept for plant defense. FEBS Lett 585:995–1000. https://doi.org/10.1016/j.febslet.2011.03.008

    Article  CAS  PubMed  Google Scholar 

  4. Steinstraesser L, Hirsch T, Schulte M et al (2012) Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS One 7:e39373. https://doi.org/10.1371/journal.pone.0039373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock RE (2013) Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16:580–589. https://doi.org/10.1016/j.mib.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  6. de la Fuente-Núñez C, Cardoso MH, de Souza Cândido E et al (2016) Synthetic antibiofilm peptides. Biochim Biophys Acta BBA – Biomembr 1858:1061–1069. https://doi.org/10.1016/j.bbamem.2015.12.015

    Article  CAS  Google Scholar 

  7. Xhindoli D, Pacor S, Benincasa M et al (2016) The human cathelicidin LL-37—a pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta BBA – Biomembr 1858:546–566. https://doi.org/10.1016/j.bbamem.2015.11.003

    Article  CAS  Google Scholar 

  8. Agbale CM, Sarfo JK, Galyuon IK et al (2019) Antimicrobial and antibiofilm activities of helical antimicrobial peptide sequences incorporating metal-binding motifs. Biochemistry 58:3802–3812. https://doi.org/10.1021/acs.biochem.9b00440

    Article  CAS  PubMed  Google Scholar 

  9. Hancock REW, Haney EF, Gill EE (2016) The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol 16:321–334. https://doi.org/10.1038/nri.2016.29

    Article  CAS  PubMed  Google Scholar 

  10. Haney EF, Straus SK, Hancock REW (2019) Reassessing the host defense peptide landscape. Front Chem 7:1–22. https://doi.org/10.3389/fchem.2019.00043

    Article  CAS  Google Scholar 

  11. Flechas SV, Acosta-González A, Escobar LA et al (2019) Microbiota and skin defense peptides may facilitate coexistence of two sympatric Andean frog species with a lethal pathogen. ISME J 13:361–373. https://doi.org/10.1038/s41396-018-0284-9

    Article  CAS  PubMed  Google Scholar 

  12. Saati-Santamaría Z, Baroncelli R, Rivas R, García-Fraile P (2022) Comparative genomics of the genus pseudomonas reveals host- and environment-specific evolution. Microbiol Spectr 10:e0237022. https://doi.org/10.1128/spectrum.02370-22

    Article  CAS  PubMed  Google Scholar 

  13. Kraus D, Peschel A (2006) Molecular mechanisms of bacterial resistance to antimicrobial peptides. In: Shafer WM (ed) Antimicrobial peptides and human disease. Springer, Berlin, Heidelberg, pp 231–250

    Chapter  Google Scholar 

  14. Anaya-López JL, López-Meza JE, Ochoa-Zarzosa A (2013) Bacterial resistance to cationic antimicrobial peptides. Crit Rev Microbiol 39:180–195. https://doi.org/10.3109/1040841X.2012.699025

    Article  CAS  PubMed  Google Scholar 

  15. Assoni L, Milani B, Carvalho MR et al (2020) Resistance mechanisms to antimicrobial peptides in Gram-positive bacteria. Front Microbiol 11:593215. https://doi.org/10.3389/fmicb.2020.593215

    Article  PubMed  PubMed Central  Google Scholar 

  16. Magana M, Pushpanathan M, Santos AL et al (2020) The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis 20:e216–e230. https://doi.org/10.1016/S1473-3099(20)30327-3

    Article  CAS  PubMed  Google Scholar 

  17. Jangir PK, Ogunlana L, Szili P et al (2023) The evolution of colistin resistance increases bacterial resistance to host antimicrobial peptides and virulence. eLife 12:e84395. https://doi.org/10.7554/eLife.84395

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093. https://doi.org/10.1093/nar/gkv1278

    Article  CAS  PubMed  Google Scholar 

  19. Xu J, Li F, Leier A et al (2021) Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides. Brief Bioinform 22:bbab083. https://doi.org/10.1093/bib/bbab083

    Article  CAS  PubMed  Google Scholar 

  20. Torres MDT, Melo MCR, Flowers L et al (2022) Mining for encrypted peptide antibiotics in the human proteome. Nat Biomed Eng 6:67–75. https://doi.org/10.1038/s41551-021-00801-1

    Article  PubMed  Google Scholar 

  21. Brand GD, Magalhães MTQ, Tinoco MLP et al (2012) Probing protein sequences as sources for encrypted antimicrobial peptides. PLoS One 7:e45848. https://doi.org/10.1371/journal.pone.0045848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramada MHS, Brand GD, Abrão FY et al (2017) Encrypted antimicrobial peptides from plant proteins. Sci Rep 7:13263. https://doi.org/10.1038/s41598-017-13685-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brand GD, Ramada MHS, Manickchand JR et al (2019) Intragenic antimicrobial peptides (IAPs) from human proteins with potent antimicrobial and anti-inflammatory activity. PLoS One 14:e0220656. https://doi.org/10.1371/journal.pone.0220656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Witten J, Witten Z (2019) Deep learning regression model for antimicrobial peptide design. https://doi.org/10.1101/692681

  25. Haney EF, Hancock REW (2013) Peptide design for antimicrobial and immunomodulatory applications. Pept Sci 100:572–583. https://doi.org/10.1002/bip.22250

    Article  CAS  Google Scholar 

  26. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575. https://doi.org/10.3390/ph6121543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de la Fuente-Núñez C, Reffuveille F, Mansour SC et al (2015) D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol 22:196–205. https://doi.org/10.1016/j.chembiol.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li FF, Brimble MA (2019) Using chemical synthesis to optimise antimicrobial peptides in the fight against antimicrobial resistance. Pure Appl Chem 91:181–198. https://doi.org/10.1515/pac-2018-0704

    Article  CAS  Google Scholar 

  29. Lima PG, Oliveira JTA, Amaral JL et al (2021) Synthetic antimicrobial peptides: characteristics, design, and potential as alternative molecules to overcome microbial resistance. Life Sci 278:119647. https://doi.org/10.1016/j.lfs.2021.119647

    Article  CAS  PubMed  Google Scholar 

  30. Fjell CD, Jenssen H, Hilpert K et al (2009) Identification of novel antibacterial peptides by chemoinformatics and machine learning. J Med Chem 52:2006–2015. https://doi.org/10.1021/jm8015365

    Article  CAS  PubMed  Google Scholar 

  31. Fjell CD, Hiss JA, Hancock REW, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11:37–51. https://doi.org/10.1038/nrd3591

    Article  CAS  Google Scholar 

  32. Cardoso MH, Orozco RQ, Rezende SB et al (2020) Computer-aided design of antimicrobial peptides: are we generating effective drug candidates? Front Microbiol 10:1–15. https://doi.org/10.3389/fmicb.2019.03097

    Article  Google Scholar 

  33. Melo MCR, Maasch JRMA, de la Fuente-Nunez C (2021) Accelerating antibiotic discovery through artificial intelligence. Commun Biol 4:1–13. https://doi.org/10.1038/s42003-021-02586-0

    Article  CAS  Google Scholar 

  34. Pirtskhalava M, Gabrielian A, Cruz P et al (2016) DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res 44:D1104–D1112. https://doi.org/10.1093/nar/gkv1174

    Article  CAS  PubMed  Google Scholar 

  35. Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y (2021) Antimicrobial peptides: an update on classifications and databases. Int J Mol Sci 22:11691. https://doi.org/10.3390/ijms222111691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ramazi S, Mohammadi N, Allahverdi A et al (2022) A review on antimicrobial peptides databases and the computational tools. Database (Oxford) 2022:baac011. https://doi.org/10.1093/database/baac011

    Article  CAS  PubMed  Google Scholar 

  37. Lin T-T, Yang L-Y, Lu I-H et al (2021) AI4AMP: an antimicrobial peptide predictor using physicochemical property-based encoding method and deep learning. mSystems 6:e00299–e00221. https://doi.org/10.1128/mSystems.00299-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Erjavac I, Kalafatovic D, Mauša G (2022) Coupled encoding methods for antimicrobial peptide prediction: how sensitive is a highly accurate model? Artif Intell Life Sci 2:100034. https://doi.org/10.1016/j.ailsci.2022.100034

    Article  CAS  Google Scholar 

  39. Jenssen H (2011) Descriptors for antimicrobial peptides. Expert Opin Drug Discov 6:171–184. https://doi.org/10.1517/17460441.2011.545817

    Article  CAS  PubMed  Google Scholar 

  40. Lata S, Sharma B, Raghava G (2007) Analysis and prediction of antibacterial peptides. BMC Bioinformatics 8:263. https://doi.org/10.1186/1471-2105-8-263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lata S, Mishra NK, Raghava GP (2010) AntiBP2: improved version of antibacterial peptide prediction. BMC Bioinformatics 11:S19. https://doi.org/10.1186/1471-2105-11-S1-S19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang P, Hu L, Liu G et al (2011) Prediction of antimicrobial peptides based on sequence alignment and feature selection methods. PLoS One 6:e18476. https://doi.org/10.1371/journal.pone.0018476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fernandes FC, Rigden DJ, Franco OL (2012) Prediction of antimicrobial peptides based on the adaptive neuro-fuzzy inference system application. Biopolymers 98:280–287. https://doi.org/10.1002/bip.22066

    Article  CAS  PubMed  Google Scholar 

  44. Torrent M, Di Tommaso P, Pulido D et al (2012) AMPA: an automated web server for prediction of protein antimicrobial regions. Bioinformatics 28:130–131. https://doi.org/10.1093/bioinformatics/btr604

    Article  CAS  PubMed  Google Scholar 

  45. Porto WF, Pires ÁS, Franco OL (2012) CS-AMPPred: an updated SVM model for antimicrobial activity prediction in cysteine-stabilized peptides. PLoS One 7:e51444. https://doi.org/10.1371/journal.pone.0051444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Joseph S, Karnik S, Nilawe P et al (2012) ClassAMP: a prediction tool for classification of antimicrobial peptides. IEEE/ACM Trans Comput Biol Bioinform 9:1535–1538. https://doi.org/10.1109/TCBB.2012.89

    Article  PubMed  Google Scholar 

  47. Mooney C, Haslam NJ, Holton TA et al (2013) PeptideLocator: prediction of bioactive peptides in protein sequences. Bioinformatics 29:1120–1126. https://doi.org/10.1093/bioinformatics/btt103

    Article  CAS  PubMed  Google Scholar 

  48. Xiao X, Wang P, Lin W-Z et al (2013) iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal Biochem 436:168–177. https://doi.org/10.1016/j.ab.2013.01.019

    Article  CAS  PubMed  Google Scholar 

  49. Gogoladze G, Grigolava M, Vishnepolsky B et al (2014) dbaasp: database of antimicrobial activity and structure of peptides. FEMS Microbiol Lett 357:63–68. https://doi.org/10.1111/1574-6968.12489

    Article  CAS  PubMed  Google Scholar 

  50. Lee H-T, Lee C-C, Yang J-R et al (2015) A large-scale structural classification of antimicrobial peptides. Biomed Res Int 2015:1–6. https://doi.org/10.1155/2015/475062

    Article  CAS  Google Scholar 

  51. Ng XY, Rosdi BA, Shahrudin S (2015) Prediction of antimicrobial peptides based on sequence alignment and support vector machine-pairwise algorithm utilizing LZ-complexity. Biomed Res Int 2015:e212715. https://doi.org/10.1155/2015/212715

    Article  CAS  Google Scholar 

  52. Waghu FH, Barai RS, Gurung P, Idicula-Thomas S (2016) CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 44. https://doi.org/10.1093/nar/gkv1051

  53. Lin W, Xu D (2016) Imbalanced multi-label learning for identifying antimicrobial peptides and their functional types. Bioinformatics 32:3745–3752. https://doi.org/10.1093/bioinformatics/btw560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Meher PK, Sahu TK, Saini V, Rao AR (2017) Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci Rep 7:42362. https://doi.org/10.1038/srep42362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bhadra P, Yan J, Li J et al (2018) AmPEP: sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Sci Rep 8:1697. https://doi.org/10.1038/s41598-018-19752-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Porto WF, Fensterseifer ICM, Ribeiro SM, Franco OL (2018) Joker: an algorithm to insert patterns into sequences for designing antimicrobial peptides. Biochim Biophys Acta BBA – Gen Subj 1862:2043–2052. https://doi.org/10.1016/j.bbagen.2018.06.011

    Article  CAS  Google Scholar 

  57. Jhong J-H, Chi Y-H, Li W-C et al (2019) dbAMP: an integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data. Nucleic Acids Res 47:D285–D297. https://doi.org/10.1093/nar/gky1030

    Article  CAS  PubMed  Google Scholar 

  58. Gull S, Shamim N, Minhas F (2019) AMAP: hierarchical multi-label prediction of biologically active and antimicrobial peptides. Comput Biol Med 107:172–181. https://doi.org/10.1016/j.compbiomed.2019.02.018

    Article  CAS  PubMed  Google Scholar 

  59. Lawrence TJ, Carper DL, Spangler MK et al (2021) amPEPpy 1.0: a portable and accurate antimicrobial peptide prediction tool. Bioinformatics 37:2058–2060. https://doi.org/10.1093/bioinformatics/btaa917

    Article  CAS  PubMed  Google Scholar 

  60. Kavousi K, Bagheri M, Behrouzi S et al (2020) IAMPE: NMR-assisted computational prediction of antimicrobial peptides. J Chem Inf Model 60:4691–4701. https://doi.org/10.1021/acs.jcim.0c00841

    Article  CAS  PubMed  Google Scholar 

  61. Burdukiewicz M, Sidorczuk K, Rafacz D et al (2020) Proteomic screening for prediction and design of antimicrobial peptides with AmpGram. Int J Mol Sci 21:4310. https://doi.org/10.3390/ijms21124310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schaduangrat N, Nantasenamat C, Prachayasittikul V, Shoombuatong W (2019) Meta-iAVP: a sequence-based meta-predictor for improving the prediction of antiviral peptides using effective feature representation. Int J Mol Sci 20:5743. https://doi.org/10.3390/ijms20225743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lertampaiporn S, Vorapreeda T, Hongsthong A, Thammarongtham C (2021) Ensemble-AMPPred: robust AMP prediction and recognition using the ensemble learning method with a new hybrid feature for differentiating AMPs. Genes 12:137. https://doi.org/10.3390/genes12020137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29:476–488. https://doi.org/10.1002/minf.201000061

    Article  CAS  PubMed  Google Scholar 

  65. Delaunay M, Ha-Duong T (2022) Computational tools and strategies to develop peptide-based inhibitors of protein-protein interactions. In: Simonson T (ed) Computational peptide science. Springer US, New York, pp 205–230

    Chapter  Google Scholar 

  66. Wang G, Vaisman II, van Hoek ML (2022) Machine learning prediction of antimicrobial peptides. In: Simonson T (ed) Computational peptide science. Springer US, New York, pp 1–37

    Google Scholar 

  67. Breiman L (2001) Random Forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  68. Veltri D, Kamath U, Shehu A (2018) Deep learning improves antimicrobial peptide recognition. Bioinformatics 34:2740–2747. https://doi.org/10.1093/bioinformatics/bty179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Azim SM, Sharma A, Shatabda S, Dehzangi A (2021) DeepAmp: a convolutional neural network based tool for predicting protein AMPylation sites from binary profile representation. https://doi.org/10.21203/rs.3.rs-1013130/v1

  70. Zhang S, Li X (2022) Pep-CNN: an improved convolutional neural network for predicting therapeutic peptides. Chemom Intell Lab Syst 221:104490. https://doi.org/10.1016/j.chemolab.2022.104490

    Article  CAS  Google Scholar 

  71. Das P, Wadhawan K, Chang O et al (2018) PepCVAE: semi-supervised targeted design of antimicrobial peptide sequences. https://doi.org/10.48550/ARXIV.1810.07743

  72. Nagarajan D, Nagarajan T, Roy N et al (2018) Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria. J Biol Chem 293:3492–3509. https://doi.org/10.1074/jbc.M117.805499

    Article  CAS  PubMed  Google Scholar 

  73. Tucs A, Tran DP, Yumoto A et al (2020) Generating ampicillin-level antimicrobial peptides with activity-aware generative adversarial networks. ACS Omega 5:22847–22851. https://doi.org/10.1021/acsomega.0c02088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xiao X, Shao Y-T, Cheng X, Stamatovic B (2021) iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types. Brief Bioinform 22:bbab209. https://doi.org/10.1093/bib/bbab209

    Article  CAS  PubMed  Google Scholar 

  75. Li C, Sutherland D, Hammond SA et al (2022) AMPlify: attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens. BMC Genomics 23:77. https://doi.org/10.1186/s12864-022-08310-4

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hussain W (2022) sAMP-PFPDeep: improving accuracy of short antimicrobial peptides prediction using three different sequence encodings and deep neural networks. Brief Bioinform 23:bbab487. https://doi.org/10.1093/bib/bbab487

    Article  CAS  PubMed  Google Scholar 

  77. Dee W (2022) LMPred: predicting antimicrobial peptides using pre-trained language models and deep learning. Bioinform Adv 2:vbac021. https://doi.org/10.1093/bioadv/vbac021

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bárcenas O, Pintado-Grima C, Sidorczuk K et al (2022) The dynamic landscape of peptide activity prediction. Comput Struct Biotechnol J 20:6526–6533. https://doi.org/10.1016/j.csbj.2022.11.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Eid F-E, Elmarakeby HA, Chan YA et al (2021) Systematic auditing is essential to debiasing machine learning in biology. Commun Biol 4:183. https://doi.org/10.1038/s42003-021-01674-5

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rádai Z, Kiss J, Nagy NA (2021) Taxonomic bias in AMP prediction of invertebrate peptides. Sci Rep 11:17924. https://doi.org/10.1038/s41598-021-97415-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Porto WF, Ferreira KCV, Ribeiro SM, Franco OL (2022) Sense the moment: a highly sensitive antimicrobial activity predictor based on hydrophobic moment. Biochim Biophys Acta BBA – Gen Subj 1866:130070. https://doi.org/10.1016/j.bbagen.2021.130070

    Article  CAS  Google Scholar 

  82. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659. https://doi.org/10.1093/bioinformatics/btl158

    Article  CAS  PubMed  Google Scholar 

  83. Aldas-Bulos VD, Plisson F (2023) Benchmarking protein structure predictors to assist machine learning-guided peptide discovery. Digital Discovery, Advanced Article. https://doi.org/10.1039/D3DD00045A

  84. Dean SN, Alvarez JAE, Zabetakis D et al (2021) PepVAE: variational autoencoder framework for antimicrobial peptide generation and activity prediction. Front Microbiol 12:725727. https://doi.org/10.3389/fmicb.2021.725727

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhang Q-Y, Yan Z-B, Meng Y-M et al (2021) Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res 8:48. https://doi.org/10.1186/s40779-021-00343-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huan Y, Kong Q, Mou H, Yi H (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 11:582779. https://doi.org/10.3389/fmicb.2020.582779

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sidorczuk K, Gagat P, Pietluch F et al (2022) Benchmarks in antimicrobial peptide prediction are biased due to the selection of negative data. Brief Bioinform 23:bbac343. https://doi.org/10.1093/bib/bbac343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee EY, Fulan BM, Wong GCL, Ferguson AL (2016) Mapping membrane activity in undiscovered peptide sequence space using machine learning. Proc Natl Acad Sci 113:13588–13593. https://doi.org/10.1073/pnas.1609893113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee EY, Lee MW, Fulan BM et al (2017) What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 7:20160153. https://doi.org/10.1098/rsfs.2016.0153

    Article  PubMed  PubMed Central  Google Scholar 

  90. Brand GD, Ramada MHS, Genaro-Mattos TC, Bloch C (2018) Towards an experimental classification system for membrane active peptides. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-19566-w

    Article  CAS  Google Scholar 

  91. Porto WF, Irazazabal L, Alves ESF et al (2018) In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat Commun 9. https://doi.org/10.1038/s41467-018-03746-3

  92. Torres MDT, de la Fuente-Nunez C (2019) Toward computer-made artificial antibiotics. Curr Opin Microbiol 51:30–38. https://doi.org/10.1016/j.mib.2019.03.004

    Article  CAS  PubMed  Google Scholar 

  93. Müller AT, Hiss JA, Schneider G (2018) Recurrent neural network model for constructive peptide design. J Chem Inf Model 58:472–479. https://doi.org/10.1021/acs.jcim.7b00414

    Article  CAS  PubMed  Google Scholar 

  94. Caceres-Delpiano J, Ibañez R, Alegre P et al (2020) Deep learning enables the design of functional de novo antimicrobial proteins. https://doi.org/10.1101/2020.08.26.266940

  95. Ferrell JB, Remington JM, Van Oort CM et al (2020) A generative approach toward precision antimicrobial peptide design. https://doi.org/10.1101/2020.10.02.324087

  96. Wang C, Garlick S, Zloh M (2021) Deep learning for novel antimicrobial peptide design. Biomol Ther 11:471. https://doi.org/10.3390/biom11030471

    Article  CAS  Google Scholar 

  97. Das P, Sercu T, Wadhawan K et al (2021) Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nat Biomed Eng 5:613–623. https://doi.org/10.1038/s41551-021-00689-x

    Article  CAS  PubMed  Google Scholar 

  98. Surana S, Arora P, Singh D et al (2021) PandoraGAN: generating antiviral peptides using Generative Adversarial Network. https://doi.org/10.1101/2021.02.15.431193

  99. Szymczak P, Możejko M, Grzegorzek T et al (2023) Discovering highly potent antimicrobial peptides with deep generative model HydrAMP. Nat Commun 14:1453. https://doi.org/10.1038/s41467-023-36994-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. García-Jacas CR, Pinacho-Castellanos SA, García-González LA, Brizuela CA (2022) Do deep learning models make a difference in the identification of antimicrobial peptides? Brief Bioinform 23:bbac094. https://doi.org/10.1093/bib/bbac094

    Article  PubMed  Google Scholar 

  101. Hamid M-N, Friedberg I (2019) Identifying antimicrobial peptides using word embedding with deep recurrent neural networks. Bioinformatics 35:2009–2016. https://doi.org/10.1093/bioinformatics/bty937

    Article  CAS  PubMed  Google Scholar 

  102. Bolatchiev A, Baturin V, Shchetinin E, Bolatchieva E (2022) Novel antimicrobial peptides designed using a recurrent neural network reduce mortality in experimental sepsis. Antibiotics 11:411. https://doi.org/10.3390/antibiotics11030411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sharma R, Shrivastava S, Kumar Singh S et al (2021) Deep-ABPpred: identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec. Brief Bioinform 22:bbab065. https://doi.org/10.1093/bib/bbab065

    Article  CAS  PubMed  Google Scholar 

  104. Dean SN, Walper SA (2020) Variational autoencoder for generation of antimicrobial peptides. ACS Omega 5:20746–20754. https://doi.org/10.1021/acsomega.0c00442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ghorbani M, Prasad S, Brooks BR, Klauda JB (2022) Deep attention based variational autoencoder for antimicrobial peptide discovery. https://doi.org/10.1101/2022.07.08.499340

  106. Su X, Xu J, Yin Y et al (2019) Antimicrobial peptide identification using multi-scale convolutional network. BMC Bioinformatics 20:730. https://doi.org/10.1186/s12859-019-3327-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yan J, Bhadra P, Li A et al (2020) Deep-AmPEP30: improve short antimicrobial peptides prediction with deep learning. Mol Ther Nucleic Acids 20:882–894. https://doi.org/10.1016/j.omtn.2020.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Van Oort CM, Ferrell JB, Remington JM et al (2021) AMPGAN v2: machine learning-guided design of antimicrobial peptides. J Chem Inf Model 61:2198–2207. https://doi.org/10.1021/acs.jcim.0c01441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ovchinnikov S, Huang P-S (2021) Structure-based protein design with deep learning. Curr Opin Chem Biol 65:136–144. https://doi.org/10.1016/j.cbpa.2021.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pan X, Kortemme T (2021) Recent advances in de novo protein design: principles, methods, and applications. J Biol Chem 296:100558. https://doi.org/10.1016/j.jbc.2021.100558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ferruz N, Heinzinger M, Akdel M et al (2023) From sequence to function through structure: deep learning for protein design. Comput Struct Biotechnol J 21:238–250. https://doi.org/10.1016/j.csbj.2022.11.014

    Article  CAS  PubMed  Google Scholar 

  112. Yue K, Dill KA (1992) Inverse protein folding problem: designing polymer sequences. Proc Natl Acad Sci 89:4163–4167. https://doi.org/10.1073/pnas.89.9.4163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. MacDonald JT, Freemont PS (2016) Computational protein design with backbone plasticity. Biochem Soc Trans 44:1523–1529. https://doi.org/10.1042/BST20160155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Anishchenko I, Pellock SJ, Chidyausiku TM et al (2021) De novo protein design by deep network hallucination. Nature 600:547–552. https://doi.org/10.1038/s41586-021-04184-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Eguchi RR, Choe CA, Huang P-S (2022) Ig-VAE: generative modeling of protein structure by direct 3D coordinate generation. PLoS Comput Biol 18:e1010271. https://doi.org/10.1371/journal.pcbi.1010271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Huang P-S, Feldmeier K, Parmeggiani F et al (2016) De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nat Chem Biol 12:29–34. https://doi.org/10.1038/nchembio.1966

    Article  CAS  PubMed  Google Scholar 

  117. Anand N, Eguchi R, Mathews II et al (2022) Protein sequence design with a learned potential. Nat Commun 13:746. https://doi.org/10.1038/s41467-022-28313-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dauparas J, Anishchenko I, Bennett N et al (2022) Robust deep learning–based protein sequence design using ProteinMPNN. Science 378:49–56. https://doi.org/10.1126/science.add2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chauhan VM, Pantazes RJ (2022) MutDock: a computational docking approach for fixed-backbone protein scaffold design. Front Mol Biosci 9:933400. https://doi.org/10.3389/fmolb.2022.933400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lutz ID, Wang S, Norn C et al (2023) Top-down design of protein architectures with reinforcement learning. Science 380:266–273. https://doi.org/10.1126/science.adf6591

    Article  CAS  PubMed  Google Scholar 

  121. Plisson F (2022) Overcoming the challenges in machine learning-guided antimicrobial peptide design. In: Proceedings of the 36th European and the 12th international peptide symposium, Sitges, Spain, pp 207–210. https://doi.org/10.17952/36EPS.2022.207

  122. Maccari G, Di Luca M, Nifosí R et al (2013) Antimicrobial peptides design by evolutionary multiobjective optimization. PLoS Comput Biol 9:e1003212. https://doi.org/10.1371/journal.pcbi.1003212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Müller AT, Kaymaz AC, Gabernet G et al (2016) Sparse neural network models of antimicrobial peptide-activity relationships. Mol Inform 35:606–614. https://doi.org/10.1002/minf.201600029

    Article  CAS  PubMed  Google Scholar 

  124. Beltran JA, Aguilera-Mendoza L, Brizuela CA (2018) Optimal selection of molecular descriptors for antimicrobial peptides classification: an evolutionary feature weighting approach. BMC Genomics 19:672. https://doi.org/10.1186/s12864-018-5030-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yoshida M, Hinkley T, Tsuda S et al (2018) Using evolutionary algorithms and machine learning to explore sequence space for the discovery of antimicrobial peptides. Chem 4:533–543. https://doi.org/10.1016/j.chempr.2018.01.005

    Article  CAS  Google Scholar 

  126. Ramos-Martín F, Annaval T, Buchoux S et al (2019) ADAPTABLE: a comprehensive web platform of antimicrobial peptides tailored to the user’s research. Life Sci Alliance 2:e201900512. https://doi.org/10.26508/lsa.201900512

    Article  PubMed  PubMed Central  Google Scholar 

  127. Plisson F, Ramírez-Sánchez O, Martínez-Hernández C (2020) Machine learning-guided discovery and design of non-hemolytic peptides. Sci Rep 10:16581. https://doi.org/10.1038/s41598-020-73644-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Capecchi A, Reymond J-L (2021) Peptides in chemical space. Med Drug Discov 9:100081. https://doi.org/10.1016/j.medidd.2021.100081

    Article  CAS  Google Scholar 

  129. Capecchi A, Cai X, Personne H et al (2021) Machine learning designs non-hemolytic antimicrobial peptides. Chem Sci 12:9221–9232. https://doi.org/10.1039/D1SC01713F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Agüero-Chapin G, Galpert-Cañizares D, Domínguez-Pérez D et al (2022) Emerging computational approaches for antimicrobial peptide discovery. Antibiotics 11:936. https://doi.org/10.3390/antibiotics11070936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Röckendorf N, Nehls C, Gutsmann T (2022) Design of membrane active peptides considering multi-objective optimization for biomedical application. Membranes 12:180. https://doi.org/10.3390/membranes12020180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Mariana del Carmen Aguilera-Puga (M.C.A.-P.) and Fabien Plisson (F.P.) are thankful to the Mexican research council Consejo Nacional de Ciencia y Tecnología (CONACYT), grant number A1-S-32579 and Premio Rosenkranz 2021 (FunSalud - Fundación para la Salud, A.C. and Roche, AG). M.C.A.-P. was the recipient of national CONACYT postgraduate scholarship. F.P. was supported by a Cátedras CONACYT fellowship—2017–2022. Natalia L. Cancelarich (N.L.C.) was awarded a postdoctoral fellowship by the Argentinian research council Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Mariela M. Marani (M.M.M.) is a researcher of CONICET. Cesar de la Fuente-Nunez (C.F.N.) holds a Presidential Professorship at the University of Pennsylvania, is a recipient of the Langer Prize by the AIChE Foundation, and acknowledges funding from the IADR Innovation in Oral Care Award, the Procter & Gamble Company, United Therapeutics, a BBRF Young Investigator Grant, the Nemirovsky Prize, Penn Health-Tech Accelerator Award, the Dean’s Innovation Fund from the Perelman School of Medicine at the University of Pennsylvania, the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM138201, and the Defense Threat Reduction Agency (DTRA; HDTRA11810041, HDTRA1-21-1-0014, and HDTRA1-23-1-0001).

Competing Interests

C.F.N. provides consulting services to Invaio Sciences and is a member of the Scientific Advisory Boards of Nowture S.L. and Phare Bio. The remaining authors declare no competing interests.

Author Contributions

F.P. conceptualized the chapter. M.C.A.-P. and N.L.C. wrote the first draft. M.M.M., C.F.N., and F.P. wrote and edited the chapter. M.C.A.-P. created the tables and F.P. made the figures. All authors reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cesar de la Fuente-Nunez or Fabien Plisson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aguilera-Puga, M.d.C., Cancelarich, N.L., Marani, M.M., de la Fuente-Nunez, C., Plisson, F. (2024). Accelerating the Discovery and Design of Antimicrobial Peptides with Artificial Intelligence. In: Gore, M., Jagtap, U.B. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 2714. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3441-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3441-7_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3440-0

  • Online ISBN: 978-1-0716-3441-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics