Skip to main content

Accelerating Molecular Dynamics Simulations for Drug Discovery

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2714))

  • 1383 Accesses

Abstract

Accurate prediction of ligand binding thermodynamics and kinetics is crucial in drug design. However, it remains challenging for conventional molecular dynamics (MD) simulations due to sampling issues. Gaussian accelerated MD (GaMD) is an enhanced sampling method that adds a harmonic boost to overcome energy barriers, which has demonstrated significant benefits in exploring protein-ligand interactions. Especially, the ligand GaMD (LiGaMD) applies a selective boost potential to the ligand nonbonded potential energy, significantly improving sampling for ligand binding and dissociation. Furthermore, a selective boost potential is applied to the potential of both ligand and protein residues around binding pocket in LiGaMD2 to further increase the sampling of protein-ligand interaction. LiGaMD and LiGaMD2 simulations could capture repetitive ligand binding and unbinding events within microsecond simulations, allowing to simultaneously characterize ligand binding thermodynamics and kinetics, which is expected to greatly facilitate drug design. In this chapter, we provide a brief review of the status of LiGaMD in drug discovery and outline its usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilson MK, Zhou HX (2007) Calculation of protein-ligand binding affinities. Annu Rev Biophys Biomol Struct 36:21–42

    Article  CAS  PubMed  Google Scholar 

  2. Gilson MK, Given JA, Bush BL, McCammon JA (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 72(3):1047–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miura K (2018) An overview of current methods to confirm protein-protein interactions. Protein Pept Lett 25(8):728–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Villarreal OD, Yu L, Rodriguez RA, Chen LY (2017) Computing the binding affinity of a ligand buried deep inside a protein with the hybrid steered molecular dynamics. Biochem Biophys Res Commun 483(1):203–208

    Article  CAS  PubMed  Google Scholar 

  5. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J Comput Phys 23(2):187–199

    Article  Google Scholar 

  6. Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 71(12):126601

    Article  Google Scholar 

  7. Darve E, Rodríguez-Gómez D, Pohorille A (2008) Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys 128(14):144120

    Article  PubMed  Google Scholar 

  8. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120(24):11919–11929

    Article  CAS  PubMed  Google Scholar 

  9. Miao Y, Feher VA, McCammon JA (2015) Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation. J Chem Theory Comput 11(8):3584–3595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miao Y, McCammon JA (2016) Unconstrained enhanced sampling for free energy calculations of biomolecules: a review. Mol Simul 42(13):1046–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miao Y, Huang YMM, Walker RC, McCammon JA, Chang CEA (2018) Ligand binding pathways and conformational transitions of the HIV protease. Biochemistry 57(9):1533–1541

    Article  CAS  PubMed  Google Scholar 

  12. Miao Y, McCammon JA (2016) Graded activation and free energy landscapes of a muscarinic G-protein–coupled receptor. PNAS 113(43):12162–12167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Arantes PR, Bhattarai A, Hsu RV, Pawnikar S, Huang YM, Miao Y (2021) Gaussian accelerated molecular dynamics: principles and applications. Wiley Interdiscip Rev Comput Mol Sci 11(5):e1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schuetz DA, de Witte WEA, Wong YC, Knasmueller B, Richter L, Kokh DB, Ecker GF (2017) Kinetics for drug discovery: an industry-driven effort to target drug residence time. Drug Discov Today 22(6):896–911

    Article  CAS  PubMed  Google Scholar 

  15. Miao Y, Bhattarai A, Wang J (2020) Ligand Gaussian accelerated molecular dynamics (LiGaMD): characterization of ligand binding thermodynamics and kinetics. J Chem Theory Comput 16(9):5526–5547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bhattarai A, Pawnikar S, Miao Y (2021) Mechanism of ligand recognition by human ACE2 receptor. J Phys Chem Lett 12(20):4814–4822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang YT, Liao JM, Lin WW, Li CC, Huang BC, Cheng TL, Chen TC (2022) Structural insights into Nirmatrelvir (PF-07321332)-3C-like SARS-CoV-2 protease complexation: a ligand Gaussian accelerated molecular dynamics study. Phys Chem Chem Phys 24(37):22898–22904

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Miao Y (2022) Ligand Gaussian accelerated molecular dynamics 2 (LiGaMD2): improved calculations of ligand binding thermodynamics and kinetics with closed protein pocket. bioRxiv 2022–12

    Google Scholar 

  19. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865

    Article  CAS  PubMed  Google Scholar 

  21. Roe DR, Cheatham TE III (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095

    Article  CAS  PubMed  Google Scholar 

  22. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  23. Burley SK, Berman HM, Kleywegt GJ, Markley JL, Nakamura H, Velankar S (2017) Protein Data Bank (PDB): the single global macromolecular structure archive. Methods Mol Biol 1607:627–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein SWISSMODEL: an automated protein. Nucleic Acids Res 31:3381–3385

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marquart M, Walter J, Deisenhofer J, Bode W, Huber R (1983) The geometry of the reactive site and of the peptide groups in trypsin, trypsinogen and its complexes with inhibitors. Acta Crystallogr B 39(4):480–490. https://doi.org/10.1107/S010876818300275X

    Article  Google Scholar 

  27. Miao Y, Bhattarai A, Nguyen ATN, Christopoulos A, May LT (2018) Structural basis for binding of allosteric drug leads in the Adenosine A1 receptor. Sci Rep 8(1):16836. https://doi.org/10.1038/s41598-018-35266-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sprenger KG, Jaeger VW, Pfaendtner J (2015) The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J Phys Chem B 119(18):5882–5895

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247260

    Article  Google Scholar 

  31. Cieplak P, Cornell WD, Bayly C, Kollman PA (1995) Application of the multimolecule and multiconformational RESP methodology to biopolymers: charge derivation for DNA, RNA, and proteins. J Comput Chem 16(11):1357–1377

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinglong Miao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Koirala, K., Joshi, K., Adediwura, V., Wang, J., Do, H., Miao, Y. (2024). Accelerating Molecular Dynamics Simulations for Drug Discovery. In: Gore, M., Jagtap, U.B. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 2714. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3441-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3441-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3440-0

  • Online ISBN: 978-1-0716-3441-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics