Skip to main content

Hemocyte Nuclei Isolation from Adult Drosophila melanogaster for snRNA-seq

  • Protocol
  • First Online:
Tissue-Resident Macrophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2713))

Abstract

In adult Drosophila, most of the hemocytes are macrophage-like cells (so called plasmatocytes), which serve various functions in organ homeostasis and immune defense. Ontogeny and functions are largely conserved between vertebrate and invertebrate macrophages. Hence, Drosophila offers a powerful genetic toolbox to study macrophage function and genetically modulate these cells. Technological advances in high-throughput sequencing approaches allowed to give an in-depth characterization of vertebrate macrophage populations and their heterogenous composition within different organs as well as changes in disease. Embryonic and larval hemocytes in Drosophila have been recently analyzed in single-cell RNA-sequencing (scRNA-seq) approaches during infection and steady state. These analyses revealed anatomical and functional Drosophila hemocyte subtypes dedicated to specific tasks. Only recently, the Fly Cell Atlas provided a whole transcriptomic single-cell atlas via single-nuclei RNA-sequencing (snRNA-seq) of adult Drosophila including many different tissues and cell types where hemocytes were also included. Yet, a specific protocol to isolate nuclei from adult hemocytes for snRNA-seq and study these cells in different experimental conditions was not available. In this chapter, we give a detailed protocol to purify hemocyte nuclei from adult Drosophila, which can be used in subsequent analyses such as snRNA-seq.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 22 December 2023

    A correction has been published.

References

  1. Sanchez Bosch P, Makhijani K, Herboso L, Gold KS, Baginsky R, Woodcock KJ, Alexander B, Kukar K, Corcoran S, Jacobs T, Ouyang D, Wong C, Ramond EJV, Rhiner C, Moreno E, Lemaitre B, Geissmann F, Brückner K (2019) Adult drosophila lack hematopoiesis but rely on a blood cell reservoir at the respiratory epithelia to relay infection signals to surrounding tissues. Dev Cell 51:787–803.e5. https://doi.org/10.1016/j.devcel.2019.10.017

    Article  CAS  PubMed  Google Scholar 

  2. Kierdorf K, Hersperger F, Sharrock J, Vincent CM, Ustaoglu P, Dou J, Gyoergy A, Groß O, Siekhaus DE, Dionne MS (2020) Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila. elife 9. https://doi.org/10.7554/eLife.51595

  3. Péan CB, Schiebler M, Tan SWS, Sharrock JA, Kierdorf K, Brown KP, Maserumule MC, Menezes S, Pilátová M, Bronda K, Guermonprez P, Stramer BM, Andres Floto R, Dionne MS (2017) Regulation of phagocyte triglyceride by a STAT-ATG2 pathway controls mycobacterial infection. Nat Commun 8:14642. https://doi.org/10.1038/ncomms14642

    Article  PubMed  PubMed Central  Google Scholar 

  4. Woodcock KJ, Kierdorf K, Pouchelon CA, Vivancos V, Dionne MS, Geissmann F (2015) Macrophage-derived upd3 cytokine causes impaired glucose homeostasis and reduced lifespan in Drosophila fed a lipid-rich diet. Immunity 42:133–144. https://doi.org/10.1016/j.immuni.2014.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krejčová G, Danielová A, Nedbalová P, Kazek M, Strych L, Chawla G, Tennessen JM, Lieskovská J, Jindra M, Doležal T, Bajgar A (2019) Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense. elife 8:e50414. https://doi.org/10.7554/eLife.50414

    Article  PubMed  PubMed Central  Google Scholar 

  6. Holz A, Bossinger B, Strasser T, Janning W, Klapper R (2003) The two origins of hemocytes in Drosophila. Dev Camb Engl 130:4955–4962. https://doi.org/10.1242/dev.00702

    Article  CAS  Google Scholar 

  7. Gold KS, Brückner K (2014) Drosophila as a model for the two myeloid blood cell systems in vertebrates. Exp Hematol 42:717–727. https://doi.org/10.1016/j.exphem.2014.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cox N, Crozet L, Holtman IR, Loyher P-L, Lazarov T, White JB, Mass E, Stanley ER, Elemento O, Glass CK, Geissmann F (2021) Diet-regulated production of PDGFcc by macrophages controls energy storage. Science 373. https://doi.org/10.1126/science.abe9383

  9. Hedlund E, Deng Q (2018) Single-cell RNA sequencing: technical advancements and biological applications. Mol Asp Med 59:36–46. https://doi.org/10.1016/j.mam.2017.07.003

    Article  CAS  Google Scholar 

  10. Masuda T, Sankowski R, Staszewski O, Böttcher C, Amann L, Sagar n, Scheiwe C, Nessler S, Kunz P, van Loo G, Coenen VA, Reinacher PC, Michel A, Sure U, Gold R, Grün D, Priller J, Stadelmann C, Prinz M (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566:388–392. https://doi.org/10.1038/s41586-019-0924-x

    Article  CAS  PubMed  Google Scholar 

  11. Guilliams M, Bonnardel J, Haest B, Vanderborght B, Wagner C, Remmerie A, Bujko A, Martens L, Thoné T, Browaeys R, De Ponti FF, Vanneste B, Zwicker C, Svedberg FR, Vanhalewyn T, Gonçalves A, Lippens S, Devriendt B, Cox E, Ferrero G, Wittamer V, Willaert A, Kaptein SJF, Neyts J, Dallmeier K, Geldhof P, Casaert S, Deplancke B, ten Dijke P, Hoorens A, Vanlander A, Berrevoet F, Van Nieuwenhove Y, Saeys Y, Saelens W, Van Vlierberghe H, Devisscher L, Scott CL (2022) Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185:379–396.e38. https://doi.org/10.1016/j.cell.2021.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cho B, Yoon S-H, Lee D, Koranteng F, Tattikota SG, Cha N, Shin M, Do H, Hu Y, Oh SY, Lee D, Vipin Menon A, Moon SJ, Perrimon N, Nam J-W, Shim J (2020) Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila. Nat Commun 11:4483. https://doi.org/10.1038/s41467-020-18135-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cattenoz PB, Sakr R, Pavlidaki A, Delaporte C, Riba A, Molina N, Hariharan N, Mukherjee T, Giangrande A (2020, e104486) Temporal specificity and heterogeneity of Drosophila immune cells. EMBO J 39. https://doi.org/10.15252/embj.2020104486

  14. Tattikota SG, Cho B, Liu Y, Hu Y, Barrera V, Steinbaugh MJ, Yoon S-H, Comjean A, Li F, Dervis F, Hung R-J, Nam J-W, Ho Sui S, Shim J, Perrimon N (2020) A single-cell survey of Drosophila blood. elife 9:e54818. https://doi.org/10.7554/eLife.54818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li H, Janssens J, De Waegeneer M, Kolluru SS, Davie K, Gardeux V, Saelens W, David FPA, Brbić M, Spanier K, Leskovec J, McLaughlin CN, Xie Q, Jones RC, Brueckner K, Shim J, Tattikota SG, Schnorrer F, Rust K, Nystul TG, Carvalho-Santos Z, Ribeiro C, Pal S, Mahadevaraju S, Przytycka TM, Allen AM, Goodwin SF, Berry CW, Fuller MT, White-Cooper H, Matunis EL, DiNardo S, Galenza A, O’Brien LE, Dow JAT, FCA Consortium§, Jasper H, Oliver B, Perrimon N, Deplancke B, Quake SR, Luo L, Aerts S, Agarwal D, Ahmed-Braimah Y, Arbeitman M, Ariss MM, Augsburger J, Ayush K, Baker CC, Banisch T, Birker K, Bodmer R, Bolival B, Brantley SE, Brill JA, Brown NC, Buehner NA, Cai XT, Cardoso-Figueiredo R, Casares F, Chang A, Clandinin TR, Crasta S, Desplan C, Detweiler AM, Dhakan DB, Donà E, Engert S, Floc’hlay S, George N, González-Segarra AJ, Groves AK, Gumbin S, Guo Y, Harris DE, Heifetz Y, Holtz SL, Horns F, Hudry B, Hung R-J, Jan YN, Jaszczak JS, Jefferis GSXE, Karkanias J, Karr TL, Katheder NS, Kezos J, Kim AA, Kim SK, Kockel L, Konstantinides N, Kornberg TB, Krause HM, Labott AT, Laturney M, Lehmann R, Leinwand S, Li J, Li JSS, Li K, Li K, Li L, Li T, Litovchenko M, Liu H-H, Liu Y, Lu T-C, Manning J, Mase A, Matera-Vatnick M, Matias NR, McDonough-Goldstein CE, McGeever A, McLachlan AD, Moreno-Roman P, Neff N, Neville M, Ngo S, Nielsen T, O’Brien CE, Osumi-Sutherland D, Özel MN, Papatheodorou I, Petkovic M, Pilgrim C, Pisco AO, Reisenman C, Sanders EN, Santos GD, Scott K, Sherlekar A, Shiu P, Sims D, Sit RV, Slaidina M, Smith HE, Sterne G, Su Y-H, Sutton D, Tamayo M, Tan M, Tastekin I, Treiber C, Vacek D, Vogler G, Waddell S, Wang W, Wilson RI, Wolfner MF, Wong Y-CE, Xie A, Xu J, Yamamoto S, Yan J, Yao Z, Yoda K, Zhu R, Zinzen RP (2022) Fly cell atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375:eabk2432. https://doi.org/10.1126/science.abk2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martelotto L (2020) ‘Frankenstein’ protocol for nuclei isolation from fresh and frozen tissue for snRNAseq. https://doi.org/10.17504/PROTOCOLS.IO.3FKGJKW

  17. Brückner K, Kockel L, Duchek P, Luque CM, Rørth P, Perrimon N (2004) The PDGF/VEGF receptor controls blood cell survival in Drosophila. Dev Cell 7:73–84. https://doi.org/10.1016/j.devcel.2004.06.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the Lighthouse Core Facility, Medical faculty, University of Freiburg and its staff, especially J. Bodinek-Wersing and U. Jagadeshwaran, for their assistance with the sorting of nuclei. The Kierdorf lab is supported by project grants of the Fritz Thyssen Foundation and of the DFG. The Kierdorf lab is further supported by the DFG through project grants within SFB/TRR167 (Project ID 259373024), CRC1479 (Project ID 441891347) and within Germany’s Excellence Strategy (grant no. CIBSS—EXC-2189, Project ID 390939984). Research in the Paeschke laboratory is fund by an ERC Stg Grant (638988-G4DSB) and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 369799452 – TRR237” as well as by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC2151 – 390873048.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katrin Paeschke or Katrin Kierdorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hersperger, F., Kastl, M., Paeschke, K., Kierdorf, K. (2024). Hemocyte Nuclei Isolation from Adult Drosophila melanogaster for snRNA-seq. In: Mass, E. (eds) Tissue-Resident Macrophages. Methods in Molecular Biology, vol 2713. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3437-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3437-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3436-3

  • Online ISBN: 978-1-0716-3437-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics