Skip to main content

Detection of Ferroptosis by Immunohistochemistry and Immunofluorescence

  • Protocol
  • First Online:
Ferroptosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2712))

Abstract

Ferroptosis is a type of regulated cell death driven by oxidative damage, characterized by iron overload and lipid peroxidation, and regulated by a network of distinct molecules and organelles. Impaired ferroptotic response is implicated in multiple physiological and pathological processes, including tumorigenesis, neurodegeneration, and ischemia-reperfusion damage. Classical techniques of immunohistochemistry (IHC) and immunofluorescence (IF) can be employed to exhibit antigen expression and location in tissues observed with microscopy, making them powerful tools in studying the ferroptosis process. In this chapter, we introduce commonly used protocols and summarize typical markers used in IHC and IF to monitor ferroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22:266–282

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stockwell BR (2022) Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185:2401–2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xie Y, Hou W, Song X et al (2016) Ferroptosis: process and function. Cell Death Differ 23:369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen X, Li J, Kang R et al (2021) Ferroptosis: machinery and regulation. Autophagy 17:2054–2081

    Article  CAS  PubMed  Google Scholar 

  5. Chen X, Kang R, Kroemer G et al (2021) Organelle-specific regulation of ferroptosis. Cell Death Differ 28:2843–2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tang D, Kroemer G, Kang R (2023) Ferroptosis in hepatocellular carcinoma: from bench to bedside. Hepatology. doi: 10.1097/HEP.0000000000000390. Publish Ahead of Print

    Google Scholar 

  7. Chen X, Kang R, Kroemer G et al (2021) Ferroptosis in infection, inflammation, and immunity. J Exp Med 218

    Google Scholar 

  8. Chen X, Kang R, Kroemer G et al (2021) Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 18:280–296

    Article  CAS  PubMed  Google Scholar 

  9. Chen X, Comish PB, Tang D et al (2021) Characteristics and biomarkers of Ferroptosis. Front Cell Dev Biol 9:637162

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tang D, Chen X, Kang R et al (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31:107–125

    Article  CAS  PubMed  Google Scholar 

  11. Liu J, Kang R, Tang D (2022) Signaling pathways and defense mechanisms of ferroptosis. FEBS J 289:7038–7050

    Article  CAS  PubMed  Google Scholar 

  12. Lin Z, Liu J, Kang R et al (2021) Lipid metabolism in ferroptosis. Adv Biol (Weinh) 5:e2100396

    Article  PubMed  Google Scholar 

  13. Yang WS, SriRamaratnam R, Welsch ME et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xue Q, Yan D, Chen X et al (2023) Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy:1–15

    Google Scholar 

  15. Badgley MA, Kremer DM, Maurer HC et al (2020) Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368:85–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Wang Y, Lin Z et al (2023) SLC25A22 as a key mitochondrial transporter against ferroptosis by producing GSH and MUFAs. Antioxid Redox Signal

    Google Scholar 

  17. Torti SV, Torti FM (2020) Iron: the cancer connection. Mol Asp Med 75:100860

    Article  CAS  Google Scholar 

  18. Chen X, Yu C, Kang R et al (2020) Iron metabolism in Ferroptosis. Front Cell Dev Biol 8:590226

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen F, Cai X, Kang R et al (2023) Autophagy-dependent Ferroptosis in cancer. Antioxid Redox Signal

    Google Scholar 

  20. Dai C, Chen X, Li J et al (2020) Transcription factors in ferroptotic cell death. Cancer Gene Ther 27:645–656

    Article  CAS  PubMed  Google Scholar 

  21. Hussaini HM, Seo B, Rich AM (2023) Immunohistochemistry and immunofluorescence. Methods Mol Biol 2588:439–450

    Article  PubMed  Google Scholar 

  22. Shi SR, Shi Y, Taylor CR (2011) Antigen retrieval immunohistochemistry: review and future prospects in research and diagnosis over two decades. J Histochem Cytochem 59:13–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Van Der Kraak L, Goel G, Ramanan K, et al (2016). 5-Fluorouracil upregulates cell surface B7-H1 (PD-L1) expression in gastrointestinal cancers. J Immunother Cancer 18 (4):65

    Google Scholar 

  24. Weis CA, Kather JN, Melchers S et al (2018) Automatic evaluation of tumor budding in immunohistochemically stained colorectal carcinomas and correlation to clinical outcome. Diagn Pathol 13:64

    Article  PubMed  PubMed Central  Google Scholar 

  25. Boxberg M, Gotz C, Haidari S et al (2018) Immunohistochemical expression of CD44 in oral squamous cell carcinoma in relation to histomorphological parameters and clinicopathological factors. Histopathology 73:559–572

    Article  PubMed  Google Scholar 

  26. Duraiyan J, Govindarajan R, Kaliyappan K et al (2012) Applications of immunohistochemistry. J Pharm Bioallied Sci 4:S307–S309

    Article  PubMed  PubMed Central  Google Scholar 

  27. Coons AH, Leduc EH, Kaplan MH (1951) Localization of antigen in tissue cells. VI. The fate of injected foreign proteins in the mouse. J Exp Med 93:173–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coons AH, Kaplan MH (1950) Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med 91:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Farr AG, Nakane PK (1981) Immunohistochemistry with enzyme labeled antibodies: a brief review. J Immunol Methods 47:129–144

    Article  CAS  PubMed  Google Scholar 

  30. Idikio HA (2009) Immunohistochemistry in diagnostic surgical pathology: contributions of protein life-cycle, use of evidence-based methods and data normalization on interpretation of immunohistochemical stains. Int J Clin Exp Pathol 3:169–176

    PubMed  PubMed Central  Google Scholar 

  31. Tan WCC, Nerurkar SN, Cai HY et al (2020) Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun (Lond) 40:135–153

    Article  PubMed  Google Scholar 

  32. Stack EC, Wang C, Roman KA et al (2014) Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70:46–58

    Article  CAS  PubMed  Google Scholar 

  33. Zhao MY, Liu P, Sun C et al (2022) Propofol augments paclitaxel-induced cervical cancer cell Ferroptosis in vitro. Front Pharmacol 13:816432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Taraska JW, Zagotta WN (2010) Fluorescence applications in molecular neurobiology. Neuron 66:170–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Konishi H, Steinbach G, Hittelman WN et al (1996) Cell kinetic analysis of intact rat colonic crypts by confocal microscopy and immunofluorescence. Gastroenterology 111:1493–1500

    Article  CAS  PubMed  Google Scholar 

  36. van de Werken C, Jahr H, Avo Santos M et al (2013) A universal method for sequential immunofluorescent analysis of chromatin and chromatin-associated proteins on chromosome spreads. Chromosom Res 21:475–489

    Article  Google Scholar 

  37. Belaya I, Kucharikova N, Gorova V et al (2021) Regular physical exercise modulates iron homeostasis in the 5xFAD mouse model of Alzheimer’s disease. Int J Mol Sci 22

    Google Scholar 

  38. Ariza J, Steward C, Rueckert F et al (2015) Dysregulated iron metabolism in the choroid plexus in fragile X-associated tremor/ataxia syndrome. Brain Res 1598:88–96

    Article  CAS  PubMed  Google Scholar 

  39. Mamais A, Kluss JH, Bonet-Ponce L et al (2021) Mutations in LRRK2 linked to Parkinson disease sequester Rab8a to damaged lysosomes and regulate transferrin-mediated iron uptake in microglia. PLoS Biol 19:e3001480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang AC, Stevens MY, Chen MB et al (2020) Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature 583:425–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen S, Li W, Zheng X et al (2022) Immunomagnetic microscopy of tumor tissues using quantum sensors in diamond. Proc Natl Acad Sci U S A 119

    Google Scholar 

  42. Vermeulen JF, van Brussel AS, van der Groep P et al (2012) Immunophenotyping invasive breast cancer: paving the road for molecular imaging. BMC Cancer 12:240

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Qiu S, Wang H et al (2021) Transcriptional repression of ferritin light chain increases Ferroptosis sensitivity in lung adenocarcinoma. Front Cell Dev Biol 9:719187

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chandran V, Gao K, Swarup V et al (2017) Inducible and reversible phenotypes in a novel mouse model of Friedreich’s ataxia. elife 6

    Google Scholar 

  45. You L, Yu PP, Dong T et al (2022) Astrocyte-derived hepcidin controls iron traffic at the blood-brain-barrier via regulating ferroportin 1 of microvascular endothelial cells. Cell Death Dis 13:667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van Raaij S, van Swelm R, Bouman K et al (2018) Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease. Sci Rep 8:9353

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang S, Chen L, Liu W (2022) Matrix stiffness-dependent STEAP3 coordinated with PD-L2 identify tumor responding to sorafenib treatment in hepatocellular carcinoma. Cancer Cell Int 22:318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhu Y, Peng X, Zhou Q et al (2022) METTL3-mediated m6A modification of STEAP2 mRNA inhibits papillary thyroid cancer progress by blocking the hedgehog signaling pathway and epithelial-to-mesenchymal transition. Cell Death Dis 13:358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamaguchi H, Honda S, Torii S et al (2020) Wipi3 is essential for alternative autophagy and its loss causes neurodegeneration. Nat Commun 11:5311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Song X, Zhu S, Chen P et al (2018) AMPK-mediated BECN1 phosphorylation promotes Ferroptosis by directly blocking system X(c)(−) activity. Curr Biol 28:2388–99. e5, 2388

    Article  Google Scholar 

  51. Chen H, Li Z, Xu J et al (2023) Curcumin induces Ferroptosis in follicular thyroid cancer by upregulating HO-1 expression. Oxidative Med Cell Longev 2023:6896790

    Article  Google Scholar 

  52. Wang S, Zheng Y, Jin S et al (2022) Dioscin protects against cisplatin-induced acute kidney injury by reducing Ferroptosis and apoptosis through activating Nrf2/HO-1 signaling. Antioxidants (Basel) 11

    Google Scholar 

  53. Cloonan SM, Glass K, Laucho-Contreras ME et al (2016) Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med 22:163–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Niu L, Ye C, Sun Y et al (2018) Mutant huntingtin induces iron overload via up-regulating IRP1 in Huntington’s disease. Cell Biosci 8:41

    Article  PubMed  PubMed Central  Google Scholar 

  55. Geldenhuys WJ, Benkovic SA, Lin L et al (2017) MitoNEET (CISD1) knockout mice show signs of striatal mitochondrial dysfunction and a Parkinson’s disease phenotype. ACS Chem Neurosci 8:2759–2765

    Article  CAS  PubMed  Google Scholar 

  56. Gong S, Chen Y, Meng F et al (2017) Roflumilast restores cAMP/PKA/CREB signaling axis for FtMt-mediated tumor inhibition of ovarian cancer. Oncotarget 8:112341–112353

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ziller N, Kotolloshi R, Esmaeili M et al (2020) Sex differences in diabetes- and TGF-beta1-induced renal damage. Cell 9

    Google Scholar 

  58. Zhou X, Cao T (2022) Zinc oxide nanoparticle inhibits tumorigenesis of renal cell carcinoma by modulating lipid metabolism targeting miR-454-3p to repressing metabolism enzyme ACSL4. J Oncol 2022:2883404

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liu C, Sun W, Zhu T et al (2022) Glia maturation factor-beta induces ferroptosis by impairing chaperone-mediated autophagic degradation of ACSL4 in early diabetic retinopathy. Redox Biol 52:102292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wei J, Nai GY, Dai Y et al (2021) Dipetidyl peptidase-4 and transferrin receptor serve as prognostic biomarkers for acute myeloid leukemia. Ann Transl Med 9:1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tomita K, Takashi Y, Ouchi Y et al (2019) Lipid peroxidation increases hydrogen peroxide permeability leading to cell death in cancer cell lines that lack mtDNA. Cancer Sci 110:2856–2866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rodriguez-Blanco G, Zeneyedpour L, Duijvesz D et al (2018) Tissue proteomics outlines AGR2 AND LOX5 as markers for biochemical recurrence of prostate cancer. Oncotarget 9:36444–36456

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kim JY, Choi BG, Jelinek J et al (2020) Promoter methylation changes in ALOX12 and AIRE1: novel epigenetic markers for atherosclerosis. Clin Epigenetics 12:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang Q, Yan G, Lei J et al (2020) The SP1-12LOX axis promotes chemoresistance and metastasis of ovarian cancer. Mol Med 26:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Khophai S, Thanee M, Techasen A et al (2018) Zileuton suppresses cholangiocarcinoma cell proliferation and migration through inhibition of the Akt signaling pathway. Onco Targets Ther 11:7019–7029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Werz O, Gerstmeier J, Libreros S et al (2018) Human macrophages differentially produce specific resolvin or leukotriene signals that depend on bacterial pathogenicity. Nat Commun 9:59

    Article  PubMed  PubMed Central  Google Scholar 

  67. Liu F, Tang L, Li Q et al (2022) Single-cell transcriptomics uncover the key ferroptosis regulators contribute to cancer progression in head and neck squamous cell carcinoma. Front Mol Biosci 9:962742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang Q, Cai J, Fang C et al (2018) Mesenchymal glioblastoma constitutes a major ceRNA signature in the TGF-beta pathway. Theranostics 8:4733–4749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martinho O, Pinto F, Granja S et al (2013) RKIP inhibition in cervical cancer is associated with higher tumor aggressive behavior and resistance to cisplatin therapy. PLoS One 8:e59104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sheng Z, Zheng F, Li J et al (2022) Denervation delays initial bone healing of rat tooth extraction socket. Odontology 111:640

    Article  PubMed  Google Scholar 

  71. Oturkar CC, Gandhi N, Rao P et al (2022) Estrogen receptor-Beta2 (ERbeta2)-mutant p53-FOXM1 Axis: a novel driver of proliferation, Chemoresistance, and disease progression in high grade serous ovarian cancer (HGSOC). Cancers (Basel) 14

    Google Scholar 

  72. Calabrese C, Panuzzo C, Stanga S et al (2020) Deferasirox-dependent iron chelation enhances mitochondrial dysfunction and restores p53 signaling by stabilization of p53 family members in leukemic cells. Int J Mol Sci 21

    Google Scholar 

  73. Sargin P, Roethle MF, Jia S et al (2022) Lactiplantibacillus plantarum 299v supplementation modulates beta-cell ER stress and antioxidative defense pathways and prevents type 1 diabetes in gluten-free BioBreeding rats. Gut Microbes 14:2136467

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pei J, Wu M, Cai S et al (2022) The protective effect of Ursolic acid on unilateral ureteral obstruction in rats by activating the Nrf2/HO-1 antioxidant signaling pathway. Comput Intell Neurosci 2022:3690524

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhu N, Chen X, Zhao J et al (2022) Hypoxia-induced LINC00674 facilitates hepatocellular carcinoma progression by activating the NOX1/mTOR signaling pathway. J Cancer 13:3177–3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xia M, Chen W, Wang J et al (2019) TRPA1 activation-induced myelin degradation plays a key role in motor dysfunction after intracerebral hemorrhage. Front Mol Neurosci 12:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ma X, Dong X, Xu Y et al (2022) Identification of AP-1 as a critical regulator of glutathione peroxidase 4 (GPX4) transcriptional suppression and acinar cell Ferroptosis in acute pancreatitis. Antioxidants (Basel) 12

    Google Scholar 

  78. Mayr L, Grabherr F, Schwarzler J et al (2020) Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease. Nat Commun 11:1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhao YY, Yang YQ, Sheng HH et al (2022) GPX4 plays a crucial role in Fuzheng Kang’ai decoction-induced non-small cell lung cancer cell Ferroptosis. Front Pharmacol 13:851680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang Y, Shi J, Liu X et al (2018) BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 20:1181–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Luo W, Dai W, Li Q et al (2022) Ferroptosis-associated molecular classification characterized by distinct tumor microenvironment profiles in colorectal cancer. Int J Biol Sci 18:1773–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hu X, Mu L, Zhu L et al (2021) Lycium barbarum polysaccharides attenuate cardiovascular oxidative stress injury by enhancing the Keap1/Nrf2 signaling pathway in exhaustive exercise rats. Mol Med Rep 24

    Google Scholar 

  83. Chen T, Yang H, Liu P et al (2022) Splicing factor SF3B3, a NS5-binding protein, restricts ZIKV infection by targeting GCH1, vol 38, Virol Sin, p 222

    Google Scholar 

  84. Pyun BJ, Jo K, Lee JY et al (2022) Caesalpinia sappan Linn. Ameliorates allergic nasal inflammation by upregulating the Keap1/Nrf2/HO-1 pathway in an allergic rhinitis mouse model and nasal epithelial cells. Antioxidants (Basel) 11

    Google Scholar 

  85. Polverino F, Doyle-Eisele M, McDonald J et al (2015) A novel nonhuman primate model of cigarette smoke-induced airway disease. Am J Pathol 185:741–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Napso T, Lean SC, Lu M et al (2022) Diet-induced maternal obesity impacts feto-placental growth and induces sex-specific alterations in placental morphology, mitochondrial bioenergetics, dynamics, lipid metabolism and oxidative stress in mice. Acta Physiol (Oxf) 234:e13795

    Article  CAS  PubMed  Google Scholar 

  87. Ide S, Kobayashi Y, Ide K et al (2021) Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair. elife 10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhong, X., Chen, R. (2023). Detection of Ferroptosis by Immunohistochemistry and Immunofluorescence. In: Kroemer, G., Tang, D. (eds) Ferroptosis. Methods in Molecular Biology, vol 2712. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3433-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3433-2_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3432-5

  • Online ISBN: 978-1-0716-3433-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics