Skip to main content

In Vitro Reconstitutive Base Excision Repair (BER) Assay

  • Protocol
  • First Online:
Base Excision Repair Pathway

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2701))

Abstract

The mammalian cell genome is continuously exposed to endogenous and exogenous insults that modify its DNA. These modifications can be single-base lesions, bulky DNA adducts, base dimers, base alkylation, cytosine deamination, nitrosation, or other types of base alteration which interfere with DNA replication. Mammalian cells have evolved with a robust defense mechanism to repair these base modifications (damages) to preserve genomic stability. Base excision repair (BER) is the major defense mechanism for cells to remove these oxidative or alkylated single-base modifications. The base excision repair process involves replacement of a single-nucleotide residue by two sub-pathways, the single-nucleotide (SN) and the multi-nucleotide or long-patch (LP) base excision repair pathways. These reactions have been reproduced in vitro using cell free extracts or purified recombinant proteins involved in the base excision repair pathway. In the present chapter, we describe the detailed methodology to reconstitute base excision repair assay systems. These reconstitutive BER assay systems use artificially synthesized and modified DNA. These reconstitutive assay system will be a true representation of biologically occurring damages and their repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iyama T, Wilson DM 3rd. (2013) DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst) 12:620–636

    Article  CAS  PubMed  Google Scholar 

  2. Drabløs F, Feyzi E, Aas PA, Vaagbø CB, Kavli B, Bratlie MS, Peña-Diaz J, Otterlei M, Slupphaug G, Krokan HE (2004) Alkylation damage in DNA and RNA – repair mechanisms and medical significance. DNA Repair (Amst) 3:1389–1407

    Article  PubMed  Google Scholar 

  3. Whitaker AM, Schaich MA, Smith MR, Flynn TS, Freudenthal BD (2017) Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci (Landmark Ed) 22:1493–1522

    Article  CAS  PubMed  Google Scholar 

  4. Payne MJ, Pratap SE, Middleton MR (2005) Temozolomide in the treatment of solid tumours: current results and rationale for dosing/scheduling. Crit Rev Oncol Hematol 53:241–252

    Article  CAS  PubMed  Google Scholar 

  5. Klaunig JE (2018) Oxidative stress and cancer. Curr Pharm Des 24:4771–4778

    Article  CAS  PubMed  Google Scholar 

  6. Jaiswal AS, Banerjee S, Panda H, Bulkin CD, Izumi T, Sarkar FH, Ostrov DA, Narayan S (2009) A novel inhibitor of DNA polymerase beta enhances the ability of temozolomide to impair the growth of colon cancer cells. Mol Cancer Res 7:1973–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawanishi S, Ohnishi S, Ma N, Hiraku Y, Murata M (2017) Crosstalk between DNA damage and inflammation in the multiple steps of carcinogenesis. Int J Mol Sci 18:1808

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kunkel TA, Diaz M (2002) Enzymatic cytosine deamination: friend and foe. Mol Cell 10:962–963

    Article  CAS  PubMed  Google Scholar 

  9. Briggs AW, Stenzel U, Meyer M, Krause J, Kircher M, Pääbo S (2010) Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res 38:e87

    Article  PubMed  Google Scholar 

  10. Narayan S, Jaiswal AS, Law BK, Kamal MA, Sharma AK, Hromas RA (2016) Interaction between APC and Fen1 during breast carcinogenesis. DNA Repair (Amst) 41:54–62

    Article  CAS  PubMed  Google Scholar 

  11. Jaiswal AS, Banerjee S, Aneja R, Sarkar FH, Ostrov DA, Narayan S (2011) DNA polymerase beta as a novel target for chemotherapeutic intervention of colorectal cancer. PLoS One 6:e16691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu Y, Cui Y, Niedernhofer LJ, Wang Y (2016) Occurrence, biological consequences, and human health relevance of oxidative stress-induced DNA damage. Chem Res Toxicol 29:2008–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sobol RW, Prasad R, Evenski A, Baker A, Yang XP, Horton JK, Wilson SH (2000) The lyase activity of the DNA repair protein beta-polymerase protects from DNA-damage-induced cytotoxicity. Nature 405:807–810

    Article  CAS  PubMed  Google Scholar 

  14. Wallace SS (2014) Base excision repair: a critical player in many games. DNA Repair (Amst) 19:14–26

    Article  CAS  PubMed  Google Scholar 

  15. Jaiswal AS, Williamson EA, Srinivasan G, Kong K, Lomelino CL, McKenna R, Walter C, Sung P, Narayan S, Hromas R (2020) The splicing component ISY1 regulates APE1 in base excision repair. DNA Repair (Amst) 86:102769

    Article  CAS  PubMed  Google Scholar 

  16. Balusu R, Jaiswal AS, Armas ML, Kundu CN, Bloom LB, Narayan S (2007) Structure/function analysis of the interaction of adenomatous polyposis coli with DNA polymerase beta and its implications for base excision repair. Biochemistry 46:13961–13974

    Article  CAS  PubMed  Google Scholar 

  17. Caglayan M, Batra VK, Sassa A, Prasad R, Wilson SH (2014) Role of polymerase beta in complementing aprataxin deficiency during abasic-site base excision repair. Nat Struct Mol Biol 21:497–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prasad R, Dyrkheeva N, Williams J, Wilson SH (2015) Mammalian base excision repair: functional partnership between PARP-1 and APE1 in AP-site repair. PLoS One 10:e0124269

    Article  PubMed  PubMed Central  Google Scholar 

  19. Prasad R, Beard WA, Chyan JY, Maciejewski MW, Mullen GP, Wilson SH (1998) Functional analysis of the amino-terminal 8-kDa domain of DNA polymerase beta as revealed by site-directed mutagenesis. DNA binding and 5′-deoxyribose phosphate lyase activities. J Biol Chem 273:11121–11126

    Article  CAS  PubMed  Google Scholar 

  20. Jaiswal AS, Panda H, Law BK, Sharma J, Jani J, Hromas R, Narayan S (2015) NSC666715 and its analogs inhibit strand-displacement activity of DNA polymerase β and potentiate temozolomide-induced DNA damage, senescence and apoptosis in colorectal cancer cells. PLoS One 10:e0123808

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jaiswal AS, Balusu R, Armas ML, Kundu CN, Narayan S (2006) Mechanism of adenomatous polyposis coli (APC)-mediated blockage of long-patch base excision repair. Biochemistry 45:15903–15914

    Article  CAS  PubMed  Google Scholar 

  22. Narayan S, Jaiswal AS, Balusu R (2005) Tumor suppressor APC blocks DNA polymerase beta-dependent strand displacement synthesis during long patch but not short patch base excision repair and increases sensitivity to methylmethane sulfonate. J Biol Chem 280:6942–6949

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Robert Hromas is supported by the National Institutes of Health (NIH) R01 CA139429 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruna S. Jaiswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jaiswal, A.S., Williamson, E.A., Jaiswal, A.S., Kong, K., Hromas, R.A. (2023). In Vitro Reconstitutive Base Excision Repair (BER) Assay. In: Bhakat, K.K., Hazra, T.K. (eds) Base Excision Repair Pathway. Methods in Molecular Biology, vol 2701. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3373-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3373-1_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3372-4

  • Online ISBN: 978-1-0716-3373-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics