Skip to main content

Highly Sensitive Radioactivity-Based DNA 3′-Phosphatase Activity Assay for Polynucleotide Kinase 3′-Phosphatase

  • Protocol
  • First Online:
Base Excision Repair Pathway

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2701))

  • 412 Accesses

Abstract

Endogenous and exogenous genotoxic agents can generate various types of non-ligatable DNA ends at the site of strand break in the mammalian genome. If not repaired, such lesions will impede transcription and replication and can lead to various cellular pathologies. Among various “dirty” DNA ends, 3′-phosphate is one of the most abundant lesions generated in the mammalian cells. Polynucleotide kinase 3′-phosphatase (PNKP) is the major DNA end-processing enzyme for resolving 3′-phosphate termini in the mammalian cells, and thus, it is involved in DNA base excision repair (BER), single-strand break repair, and classical nonhomologous end joining (C-NHEJ)-mediated DNA double-strand break (DSB) repair. The 3′-OH ends generated following PNKP-mediated processing of 3′-P are utilized by a DNA polymerase to fill in the gap, and subsequently, the nick is sealed by a DNA ligase to complete the repair process. Here we describe two novel assay systems to detect phosphate release by PNKP’s 3′-phosphatase activity and PNKP-mediated in vitro single-strand break repair with minimal repair components (PNKP, DNA polymerase, and DNA ligase) using either purified proteins or cell-free nuclear extracts from mammalian cells/tissues. These assays are highly reproducible and sensitive, and the researchers would be able to detect any significant difference in PNKP’s 3′-phosphatase activity as well as PNKP-mediated single-strand break repair activity in diseased mammalian cells/tissues vs normal healthy controls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hazra TK, Das A, Das S, Choudhury S, Kow YW, Roy R (2007) Oxidative DNA damage repair in mammalian cells: a new perspective. DNA Repair (Amst) 6(4):470–480. https://doi.org/10.1016/j.dnarep.2006.10.011

    Article  CAS  PubMed  Google Scholar 

  2. Vermeij WP, Hoeijmakers JHJ, Pothof J (2014) Aging: not all DNA damage is equal. Curr Opin Genet Dev 26:124–130. https://doi.org/10.1016/j.gde.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  3. Tubbs A, Nussenzweig A (2017) Endogenous DNA damage as a source of genomic instability in cancer. Cell 168(4):644–656. https://doi.org/10.1016/j.cell.2017.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gates KS (2009) An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol 22(11):1747–1760. https://doi.org/10.1021/tx900242k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wiederhold L, Leppard JB, Kedar P, Karimi-Busheri F et al (2004) AP endonuclease-independent DNA base excision repair in human cells. Mol Cell 15(2):209–220. https://doi.org/10.1016/j.molcel.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  6. Chang HYH, Pannunzio NR, Adachi N, Lieber MR (2020) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18:495–506

    Article  Google Scholar 

  7. Mullins EA, Rodriguez AA, Bradley NP, Eichman BF (2019) Emerging roles of DNA glycosylases and the base excision repair pathway. Trends Biochem Sci 44(9):765–781. https://doi.org/10.1016/j.tibs.2019.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wallace SS (2014) Base excision repair: a critical player in many games. DNA Repair (Amst) 19:14–26. https://doi.org/10.1016/j.dnarep.2014.03.030

    Article  CAS  PubMed  Google Scholar 

  9. Jilani A, Ramotar D, Slack C, Ong C et al (1999) Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3′-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J Biol Chem 274(34):24176–24186. https://doi.org/10.1074/jbc.274.34.24176

    Article  CAS  PubMed  Google Scholar 

  10. Karimi-Busheri F, Daly G, Robins P, Canas B et al (1999) Molecular characterization of a human DNA kinase. J Biol Chem 274(34):24187–24194. https://doi.org/10.1074/jbc.274.34.24187

    Article  CAS  PubMed  Google Scholar 

  11. Habraken Y, Verly WG (1988) Further purification and characterization of the DNA 3′-phosphatase from rat-liver chromatin which is also a polynucleotide 5′-hydroxyl kinase. Eur J Biochem 171(1–2):59–66. https://doi.org/10.1111/j.1432-1033.1988.tb13758.x

    Article  CAS  PubMed  Google Scholar 

  12. Mandal SM, Hegde ML, Chatterjee A, Hegde PM et al (2012) Role of human DNA glycosylase Nei-like 2 (NEIL2) and single strand break repair protein polynucleotide kinase 3′-phosphatase in maintenance of mitochondrial genome. J Biol Chem 287(4):2819–2829. https://doi.org/10.1074/jbc.M111.272179

    Article  CAS  PubMed  Google Scholar 

  13. Chatterjee A, Saha S, Chakraborty A, Silva-Fernandes A et al (2015) The role of the mammalian DNA end-processing enzyme polynucleotide kinase 3′-phosphatase in spinocerebellar ataxia type 3 pathogenesis. PLoS Genet 11(1):e1004749. https://doi.org/10.1371/journal.pgen.1004749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Whitehouse CJ, Taylor RM, Thistlethwaite A, Zhang H et al (2001) XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell 104(1):107–117. https://doi.org/10.1016/s0092-8674(01)00195-7

    Article  CAS  PubMed  Google Scholar 

  15. Chakraborty A, Tapryal N, Venkova T, Horikoshi N et al (2016) Classical non-homologous end-joining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes. Nat Commun 7:13049. https://doi.org/10.1038/ncomms13049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Neil AJ, Belotserkovskii BP, Hanawalt PC (2012) Transcription blockage by bulky end termini at single-strand breaks in the DNA template: differential effects of 5′ and 3′ adducts. Biochemistry 51(44):8964–8970. https://doi.org/10.1021/bi301240y

    Article  CAS  PubMed  Google Scholar 

  17. Chakraborty A, Tapryal N, Venkova T, Mitra J et al (2020) Deficiency in classical nonhomologous end-joining-mediated repair of transcribed genes is linked to SCA3 pathogenesis. Proc Natl Acad Sci U S A 117(14):8154–8165. https://doi.org/10.1073/pnas.1917280117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wallace SS, Murphy DL, Sweasy JB (2012) Base excision repair and cancer. Cancer Lett 327(1–2):73–89. https://doi.org/10.1016/j.canlet.2011.12.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hegde ML, Mantha AK, Hazra TK, Bhakat KK et al (2012) Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases. Mech Ageing Dev 133(4):157–168. https://doi.org/10.1016/j.mad.2012.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vijg J, Suh Y (2013) Genome instability and aging. Annu Rev Physiol 75:645–668. https://doi.org/10.1146/annurev-physiol-030212-183715

    Article  CAS  PubMed  Google Scholar 

  21. Rulten SL, Caldecott KW (2013) DNA strand break repair and neurodegeneration. DNA Repair (Amst) 12(8):558–567. https://doi.org/10.1016/j.dnarep.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  22. Gao R, Liu Y, Silva-Fernandes A, Fang X et al (2015) Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3. PLoS Genet 11(1):e1004834. https://doi.org/10.1371/journal.pgen.1004834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao R, Chakraborty A, Geater C, Pradhan S et al (2019) Mutant huntingtin impairs PNKP and ATXN3, disrupting DNA repair and transcription. elife 8:e42988. https://doi.org/10.7554/eLife.42988

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dey S, Maiti AK, Hegde ML, Hegde PM et al (2012) Increased risk of lung cancer associated with a functionally impaired polymorphic variant of the human DNA glycosylase NEIL2. DNA Repair (Amst) 11(6):570–578. https://doi.org/10.1016/j.dnarep.2012.03.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health Grant 2R01 NS073976 to TH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas K. Hazra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chakraborty, A., Hazra, T.K. (2023). Highly Sensitive Radioactivity-Based DNA 3′-Phosphatase Activity Assay for Polynucleotide Kinase 3′-Phosphatase. In: Bhakat, K.K., Hazra, T.K. (eds) Base Excision Repair Pathway. Methods in Molecular Biology, vol 2701. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3373-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3373-1_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3372-4

  • Online ISBN: 978-1-0716-3373-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics