Skip to main content

Tumorsphere Formation Assay: A Cancer Stem-Like Cell Characterization in Pediatric Brain Cancer Medulloblastoma

  • Protocol
  • First Online:
Base Excision Repair Pathway

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2701))

  • 554 Accesses

Abstract

Cancer is a heterogeneous disease, comprising of a mixture of different cell populations. Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are a subpopulation of multipotent cells within the cancer that has self-renewing capability, tumor-initiating ability, multi-differentiation potential, and an inherent capacity for drug and chemoresistance. Sphere-formation assay is commonly used for enrichment and analysis of CSC properties in vitro and is typically used as a metric for testing the viability of tumor cells to anticancer agents. This model is based on the ability of CSCs to grow under ultralow-attachment conditions in serum-free medium supplemented with growth factors. In contrast to the adherent 2D culture of cancer cells, the 3D culture of tumorsphere assay exploits inherent biologic features of CSCs such as anoikis resistance and self-renewal. We describe here the detailed methodology for the generation and propagation of spheres generated from pediatric brain tumor medulloblastoma (MB) cells. As signal transducer and activator of transcription (STAT3) is known to play an important role in maintaining cancer stem cell properties, we accessed the effect of depleting or inhibiting STAT3 on MB-sphere sizes, numbers, and integrity. This may serve as a promising platform for screening potential anti-CSC agents and small-molecule inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu Z, Pestell TG, Lisanti MP, Pestell RG (2012) Cancer stem cells. Int J Biochem Cell Biol 44:2144–2151. https://doi.org/10.1016/j.biocel.2012.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124:1111–1115. https://doi.org/10.1016/j.cell.2006.03.011

    Article  CAS  PubMed  Google Scholar 

  3. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768. https://doi.org/10.1038/nrc2499

    Article  CAS  PubMed  Google Scholar 

  4. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284. https://doi.org/10.1038/nrc1590

    Article  CAS  PubMed  Google Scholar 

  5. Shlush LI, Mitchell A, Heisler L, Abelson S, Ng SWK, Trotman-Grant A, Medeiros JJF, Rao-Bhatia A, Jaciw-Zurakowsky I, Marke R, McLeod JL, Doedens M, Bader G, Voisin V, Xu C, McPherson JD, Hudson TJ, Wang JCY, Minden MD, Dick JE (2017) Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature 547:104–108. https://doi.org/10.1038/nature22993

    Article  CAS  PubMed  Google Scholar 

  6. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648. https://doi.org/10.1038/367645a0

    Article  CAS  PubMed  Google Scholar 

  7. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  8. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988. https://doi.org/10.1073/pnas.0530291100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337. https://doi.org/10.1158/0008-5472.CAN-05-1343

    Article  CAS  PubMed  Google Scholar 

  10. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951. https://doi.org/10.1158/0008-5472.CAN-05-2018

    Article  CAS  PubMed  Google Scholar 

  11. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110. https://doi.org/10.1038/nature05372

    Article  CAS  PubMed  Google Scholar 

  12. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037. https://doi.org/10.1158/0008-5472.CAN-06-2030

    Article  CAS  PubMed  Google Scholar 

  13. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514. https://doi.org/10.1038/sj.cdd.4402283

    Article  CAS  PubMed  Google Scholar 

  14. Ray S, Chaturvedi NK, Bhakat KK, Rizzino A, Mahapatra S (2021) Subgroup-specific diagnostic, prognostic, and predictive markers influencing pediatric Medulloblastoma treatment. Diagnostics (Basel) 12. https://doi.org/10.3390/diagnostics12010061

  15. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, Eberhart CG, Parsons DW, Rutkowski S, Gajjar A, Ellison DW, Lichter P, Gilbertson RJ, Pomeroy SL, Kool M, Pfister SM (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123:465–472. https://doi.org/10.1007/s00401-011-0922-z

    Article  CAS  PubMed  Google Scholar 

  16. Gibson P, Tong Y, Robinson G, Thompson MC, Currle DS, Eden C, Kranenburg TA, Hogg T, Poppleton H, Martin J, Finkelstein D, Pounds S, Weiss A, Patay Z, Scoggins M, Ogg R, Pei Y, Yang ZJ, Brun S, Lee Y, Zindy F, Lindsey JC, Taketo MM, Boop FA, Sanford RA, Gajjar A, Clifford SC, Roussel MF, McKinnon PJ, Gutmann DH, Ellison DW, Wechsler-Reya R, Gilbertson RJ (2010) Subtypes of medulloblastoma have distinct developmental origins. Nature 468:1095–1099. https://doi.org/10.1038/nature09587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gilbertson RJ (2004) Medulloblastoma: signalling a change in treatment. Lancet Oncol 5:209–218. https://doi.org/10.1016/S1470-2045(04)01424-X

    Article  PubMed  Google Scholar 

  18. Gilbertson RJ, Ellison DW (2008) The origins of medulloblastoma subtypes. Annu Rev Pathol 3:341–365. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151518

    Article  CAS  PubMed  Google Scholar 

  19. Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B, Garzia L, Torchia J, Nor C, Morrissy AS, Agnihotri S, Thompson YY, Kuzan-Fischer CM, Farooq H, Isaev K, Daniels C, Cho BK, Kim SK, Wang KC, Lee JY, Grajkowska WA, Perek-Polnik M, Vasiljevic A, Faure-Conter C, Jouvet A, Giannini C, Rao AAN, Li KKW, Ng HK, Eberhart CG, Pollack IF, Hamilton RL, Gillespie GY, Olson JM, Leary S, Weiss WA, Lach B, Chambless LB, Thompson RC, Cooper MK, Vibhakar R, Hauser P, van Veelen MC, Kros JM, French PJ, Ra YS, Kumabe T, Lopez-Aguilar E, Zitterbart K, Sterba J, Finocchiaro G, Massimino M, Van Meir EG, Osuka S, Shofuda T, Klekner A, Zollo M, Leonard JR, Rubin JB, Jabado N, Albrecht S, Mora J, Van Meter TE, Jung S, Moore AS, Hallahan AR, Chan JA, Tirapelli DPC, Carlotti CG, Fouladi M, Pimentel J, Faria CC, Saad AG, Massimi L, Liau LM, Wheeler H, Nakamura H, Elbabaa SK, Perezpena-Diazconti M, de Leon FCP, Robinson S, Zapotocky M, Lassaletta A, Huang A, Hawkins CE, Tabori U, Bouffet E, Bartels U, Dirks PB, Rutka JT, Bader GD, Reimand J, Goldenberg A, Ramaswamy V, Taylor MD (2017) Intertumoral heterogeneity within Medulloblastoma subgroups. Cancer Cell 31:737. https://doi.org/10.1016/j.ccell.2017.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stavrou T, Bromley CM, Nicholson HS, Byrne J, Packer RJ, Goldstein AM, Reaman GH (2001) Prognostic factors and secondary malignancies in childhood medulloblastoma. J Pediatr Hematol Oncol 23:431–436. https://doi.org/10.1097/00043426-200110000-00008

    Article  CAS  PubMed  Google Scholar 

  21. Konrad CV, Murali R, Varghese BA, Nair R (2017) The role of cancer stem cells in tumor heterogeneity and resistance to therapy. Can J Physiol Pharmacol 95:1–15. https://doi.org/10.1139/cjpp-2016-0079

    Article  CAS  PubMed  Google Scholar 

  22. Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8:486–498. https://doi.org/10.1016/j.stem.2011.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ayob AZ, Ramasamy TS (2018) Cancer stem cells as key drivers of tumour progression. J Biomed Sci 25:20. https://doi.org/10.1186/s12929-018-0426-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S (2005) LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132:885–896. https://doi.org/10.1242/dev.01670

    Article  CAS  PubMed  Google Scholar 

  25. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr (1999) Stat3 as an oncogene. Cell 98:295–303

    Article  CAS  PubMed  Google Scholar 

  26. Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662. https://doi.org/10.1038/nrm909

    Article  CAS  PubMed  Google Scholar 

  27. Darnell JE Jr (1997) STATs and gene regulation. Science 277:1630–1635

    Article  CAS  PubMed  Google Scholar 

  28. Xiao H, Bid HK, Jou D, Wu X, Yu W, Li C, Houghton PJ, Lin J (2015) A novel small molecular STAT3 inhibitor, LY5, inhibits cell viability, cell migration, and angiogenesis in medulloblastoma cells. J Biol Chem 290:3418–3429. https://doi.org/10.1074/jbc.M114.616748

    Article  CAS  PubMed  Google Scholar 

  29. Sreenivasan L, Wang H, Yap SQ, Leclair P, Tam A, Lim CJ (2020) Autocrine IL-6/STAT3 signaling aids development of acquired drug resistance in group 3 medulloblastoma. Cell Death Dis 11:1035. https://doi.org/10.1038/s41419-020-03241-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen X, Pan L, Wei J, Zhang R, Yang X, Song J, Bai RY, Fu S, Pierson CR, Finlay JL, Li C, Lin J (2021) LLL12B, a small molecule STAT3 inhibitor, induces growth arrest, apoptosis, and enhances cisplatin-mediated cytotoxicity in medulloblastoma cells. Sci Rep 11:6517. https://doi.org/10.1038/s41598-021-85888-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ray S, Coulter DW, Gray SD, Sughroue JA, Roychoudhury S, McIntyre EM, Chaturvedi NK, Bhakat KK, Joshi SS, McGuire TR, Sharp JG (2018) Suppression of STAT3 NH2 -terminal domain chemosensitizes medulloblastoma cells by activation of protein inhibitor of activated STAT3 via de-repression by microRNA-21. Mol Carcinog 57:536–548. https://doi.org/10.1002/mc.22778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zaiter A, Audi ZF, Shawraba F, Saker Z, Bahmad HF, Nabha RH, Harati H, Nabha SM (2022) STAT3 in medulloblastoma: a key transcriptional regulator and potential therapeutic target. Mol Biol Rep 49:10635–10652. https://doi.org/10.1007/s11033-022-07694-6

    Article  CAS  PubMed  Google Scholar 

  33. Yang MY, Lee HT, Chen CM, Shen CC, Ma HI (2014) Celecoxib suppresses the phosphorylation of STAT3 protein and can enhance the radiosensitivity of medulloblastoma-derived cancer stem-like cells. Int J Mol Sci 15:11013–11029. https://doi.org/10.3390/ijms150611013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garg N, Bakhshinyan D, Venugopal C, Mahendram S, Rosa DA, Vijayakumar T, Manoranjan B, Hallett R, McFarlane N, Delaney KH, Kwiecien JM, Arpin CC, Lai PS, Gomez-Biagi RF, Ali AM, de Araujo ED, Ajani OA, Hassell JA, Gunning PT, Singh SK (2017) CD133+ brain tumor-initiating cells are dependent on STAT3 signaling to drive medulloblastoma recurrence. Oncogene 36:606–617. https://doi.org/10.1038/onc.2016.235

    Article  CAS  PubMed  Google Scholar 

  35. Rohrer KA, Song H, Akbar A, Chen Y, Pramanik S, Wilder PJ, McIntyre EM, Chaturvedi NK, Bhakat KK, Rizzino A, Coulter DW, Ray S (2023) STAT3 inhibition attenuates MYC expression by modulating co-activator recruitment and suppresses Medulloblastoma tumor growth by augmenting cisplatin efficacy in vivo. Cancers 15(8):2239. https://doi.org/10.3390/cancers15082239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutapa Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ray, S. (2023). Tumorsphere Formation Assay: A Cancer Stem-Like Cell Characterization in Pediatric Brain Cancer Medulloblastoma. In: Bhakat, K.K., Hazra, T.K. (eds) Base Excision Repair Pathway. Methods in Molecular Biology, vol 2701. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3373-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3373-1_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3372-4

  • Online ISBN: 978-1-0716-3373-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics