Skip to main content

Flow Cytometry Analysis of IL-1 Receptors and Toll-Like Receptors on Platelets and Platelet-Derived Extracellular Vesicles

  • Protocol
  • First Online:
Toll-Like Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2700))

  • 425 Accesses

Abstract

Flow cytometry is largely used for the immunophenotyping and quantification of several cell types or related components including platelets and extracellular vesicles. Platelets and platelet-derived extracellular vesicles (PEVs) are receiving increased interest in inflammatory diseases including sepsis. Thus, in this chapter, we will describe protocols for the flow cytometry analysis of platelets, platelet/neutrophils hetero aggregates, and PEVs mainly focusing on the evaluation of the surface expression of some IL-1 receptor (ILR) and Toll-like receptor (TLR) family members.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flores-Montero J, Sanoja-Flores L et al (2017) Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia 31(10):2094–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cimmino G, Golino P (2013) Platelet biology and receptor pathways. J Cardiovasc Transl Res 6(3):299–309

    Article  PubMed  Google Scholar 

  3. Semple JW, Italiano JE Jr, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11(4):264–274

    Article  CAS  PubMed  Google Scholar 

  4. Beaulieu LM, Freedman JE (2009) The role of inflammation in regulating platelet production and function: toll-like receptors in platelets and megakaryocytes. Thromb Res 125(3):205–209

    Article  PubMed  PubMed Central  Google Scholar 

  5. Andonegui G, Kerfoot SM et al (2005) Platelets express functional Toll-like receptor-4. Blood 106(7):2417–2423

    Article  CAS  PubMed  Google Scholar 

  6. Stephen RC, Ma AC et al (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13(4):463–469

    Article  Google Scholar 

  7. Blair P, Rex S et al (2009) Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res 104(3):346–354

    Article  CAS  PubMed  Google Scholar 

  8. Brown GT, Narayanan P et al (2013) Lipopolysaccharide stimulates platelets through an IL-1β autocrine loop. J Immunol 191(10):5196–5203

    Article  CAS  PubMed  Google Scholar 

  9. Anselmo A, Riva F et al (2016) Expression and function of IL-1R8 (TIR8/SIGIRR): a regulatory member of the IL-1 receptor family in platelets. Cardiovasc Res 111(4):373–384

    Article  CAS  PubMed  Google Scholar 

  10. Middeldorp S, Coppens M et al (2020) Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost 18(8):1995–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klok FA, Kruip MJHA et al (2020) Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 191:145–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hottz ED, Azevedo-Quintanilha IG et al (2020) Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 136(11):1330–1341

    Article  CAS  PubMed  Google Scholar 

  13. Anselmo A, Frank D et al (2021) Myocardial hypoxic stress mediates functional cardiac extracellular vesicle release. Eur Heart J 42(28):2780–2792

    Article  CAS  PubMed  Google Scholar 

  14. Yáñez-Mó M, Siljander PR et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066

    Article  PubMed  Google Scholar 

  15. Vion AC, Ramkhelawon B et al (2013) Shear stress regulates endothelial microparticle release. Circ Res 112(10):1323–1333

    Article  CAS  PubMed  Google Scholar 

  16. Théry C, Witwer KW et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xu R, Greening DW et al (2016) Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest 126(4):1152–1162

    Article  PubMed  PubMed Central  Google Scholar 

  18. Théry C, Zitvogel L et al (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579

    Article  PubMed  Google Scholar 

  19. Diehl P, Fricke A et al (2012) Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res 93(4):633–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mobarrez F, Antovic J et al (2010) A multicolor flow cytometric assay for measurement of platelet-derived microparticles. Thromb Res 125(3):110–116

    Article  Google Scholar 

  21. Rozmyslowicz T, Majka M et al (2003) Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. AIDS 17(1):33–42

    Article  CAS  PubMed  Google Scholar 

  22. Pienimaeki-Roemer A, Konovalova T et al (2017) Transcriptomic profiling of platelet senescence and platelet extracellular vesicles. Transfusion 57(1):144–156

    Article  CAS  PubMed  Google Scholar 

  23. Loyer X, Vion AC et al (2014) Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res 114(2):345–353

    Article  CAS  PubMed  Google Scholar 

  24. Robbins PD, Dorronsoro A et al (2016) Regulation of chronic inflammatory and immune processes by extracellular vesicles. J Clin Invest 126(4):1173–1180

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kerris EWJ, Hoptay C et al (2020) Platelets and platelet extracellular vesicles in hemostasis and sepsis. J Investig Med 68(4):813–820

    Article  PubMed  Google Scholar 

  26. Bei JJ, Liu C et al (2016) Staphylococcal SSL5-induced platelet microparticles provoke proinflammatory responses via the CD40/TRAF6/NFκB signalling pathway in monocytes. Thromb Haemost 115(3):632–645

    Article  PubMed  Google Scholar 

  27. Brown GT, McIntyre TM (2011) Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1β-rich microparticles. J Immunol 186(9):5489–5496

    Article  CAS  PubMed  Google Scholar 

  28. Boilard E, Paré G (2014) Influenza virus H1N1 activates platelets through FcγRIIA signaling and thrombin generation. Blood 123(18):2854–2863

    Article  CAS  PubMed  Google Scholar 

  29. Puhm F, Flamand L et al (2022) Platelet extracellular vesicles in COVID-19: potential markers and makers. J Leukoc Biol 111(1):63–74

    Article  CAS  PubMed  Google Scholar 

  30. Cappellano G, Raineri D et al (2021) Circulating platelet-derived extracellular vesicles are a Hallmark of Sars-Cov-2 infection. Cell 10(1):85

    Article  CAS  Google Scholar 

  31. Guervilly C, Bonifay A et al (2021) Dissemination of extreme levels of extracellular vesicles: tissue factor activity in patients with severe COVID-19. Blood Adv 5(3):628–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Welsh JA, Van Der Pol E et al (2020) MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J Extracell Vesicles 9(1):1713526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clark SR, Ma AC et al (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13(4):463–469

    Article  CAS  PubMed  Google Scholar 

  34. Arraud N, Linares R et al (2014) Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost 12(5):614–627

    Article  CAS  PubMed  Google Scholar 

  35. Cossarizza A, Chang HD et al (2019) Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol 49(10):1457–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roederer M (2002) Compensation in flow cytometry. Curr Protoc Cytom Chapter 1:Unit 1.14

    Google Scholar 

  37. Anselmo A, Colombo FS (2021) Flow cytometry instrument setting as a crucial checkpoint for optimal T-cell analysis and sorting. Methods Mol Biol 2325:1–27

    Article  CAS  PubMed  Google Scholar 

  38. Szalóki G, Goda K (2015) Compensation in multicolor flow cytometry. Cytometry A 87(11):982–985

    Article  PubMed  Google Scholar 

  39. Andrade MG, de Freitas Brandão CJ et al (2008) Evaluation of factors that can modify platelet-rich plasma properties. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105(1):e5

    Article  PubMed  Google Scholar 

  40. Yuana Y, Böing AN et al (2015) Handling and storage of human body fluids for analysis of extracellular vesicles. J Extracell Vesicles 11(4):29260

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achille Anselmo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Anselmo, A., Boselli, D. (2023). Flow Cytometry Analysis of IL-1 Receptors and Toll-Like Receptors on Platelets and Platelet-Derived Extracellular Vesicles. In: Fallarino, F., Gargaro, M., Manni, G. (eds) Toll-Like Receptors. Methods in Molecular Biology, vol 2700. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3366-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3366-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3365-6

  • Online ISBN: 978-1-0716-3366-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics