Skip to main content

Development of Optimal Virtual Screening Strategies to Identify Novel Toll-Like Receptor Ligands Using the DockBox Suite

  • Protocol
  • First Online:
Toll-Like Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2700))

  • 414 Accesses

Abstract

Toll-like receptors (TLRs) represent attractive targets for developing modulators for the treatment of many pathologies, including inflammation, cancer, and autoimmune diseases. Here, we describe a protocol based on the DockBox package that enables to set up and perform structure-based virtual screening in order to increase the chance of identifying novel TLR ligands from chemical libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that other protein preparation tools can be used like Schrödinger’s Protein Preparation Wizard [37] or the H++ server (http://newbiophysics.cs.vt.edu/H++) [38]

  2. 2.

    Free tools for compound clustering can be used for the same purpose (for example the best-first clustering scripts available at https://github.com/docking-org/ChemInfTools/tree/master/utils [24] or the diversity filtering scripts from https://www.frdr-dfdr.ca/repo/dataset/f8180e92-a7dd-4c62-b541-33282115d887 [39]).

  3. 3.

    Six pairs: Autodock-Vina, AutoDock-DOCK, AutoDock-DSX, Vina-DOCK, Vina-DSX, DOCK-DSX; four triplets: Autodock-Vina-DOCK, Autodock-Vina-DSX, Autodock-DOCK-DSX, Vina-DOCK-DSX; one quadruplet: Autodock-Vina-DOCK-DSX.

  4. 4.

    A ligand pose was assumed to be correctly predicted if, after spatial superimposition with the corresponding cocrystallized structure, RMSD over ligand atoms was lower than 2.0 Å.

References

  1. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  CAS  PubMed  Google Scholar 

  2. Moresco EMY, LaVine D, Beutler B (2011) Toll-like receptors. Curr Biol 21:R488–R493

    Article  CAS  PubMed  Google Scholar 

  3. Anwar MA, Shah M, Kim J et al (2019) Recent clinical trends in toll-like receptor targeting therapeutics. Medicinal Research Reviews 39(3):1053–1090. https://doi.org/10.1002/med.21553

    Article  CAS  PubMed  Google Scholar 

  4. Romero CD, Varma TK, Hobbs JB et al (2011) The toll-like receptor 4 agonist monophosphoryl lipid a augments innate host resistance to systemic bacterial infection. Infect Immun 79:3576–3587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wagstaff AJ, Perry CM (2007) Topical imiquimod: a review of its use in the management of anogenital warts, actinic keratoses, basal cell carcinoma and other skin lesions. Drugs 67:2187–2210. https://doi.org/10.2165/00003495-200767150-00006

    Article  CAS  PubMed  Google Scholar 

  6. El-Zayat SR, Sibaii H, Mannaa FA (2019) Toll-like receptors activation, signaling, and targeting: an overview. Bull Natl Res Cent 43:1–12

    Article  Google Scholar 

  7. O’Neill LAJ, Hennessy EJ, Parker AE (2010) Targeting Toll-like receptors: Emerging therapeutics? Nature Rev Drug Discov 9(4):293–307. https://www.nature.com/articles/nrd3203

    Article  Google Scholar 

  8. Patinote C, Karroum NB, Moarbess G et al (2020) Agonist and antagonist ligands of toll-like receptors 7 and 8: ingenious tools for therapeutic purposes. European J Med Chem 193:112238

    Article  CAS  Google Scholar 

  9. Zhang S, Hu Z, Tanji H et al (2018) Small-molecule inhibition of TLR8 through stabilization of its resting state. Nat Chem Biol 14:58–64

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Z, Ohto U, Shibata T et al (2016) Structural analysis reveals that toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45:737–748

    Article  CAS  PubMed  Google Scholar 

  11. Tojo S, Zhang Z, Matsui H et al (2020) Structural analysis reveals TLR7 dynamics underlying antagonism. Nat Commun 111(11):1–11

    Google Scholar 

  12. Mistry P, Laird MHW, Schwarz RS et al (2015) Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain. Proc Natl Acad Sci USA 112:5455–5460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Varadi M, Anyango S, Deshpande M et al (2022) AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50:D439–D444

    Article  CAS  PubMed  Google Scholar 

  14. Tuszynski JA, Winter P, White D et al (2014) Mathematical and computational modeling in biology at multiple scales. Theor Biol Med Model 11:52

    Article  PubMed  PubMed Central  Google Scholar 

  15. Preto J, Gentile F, Winter P et al (2018) Molecular dynamics and related computational methods with applications to drug discovery. In: Bonilla LL, Kaxiras E, Melnik R (eds) Coupled mathematical models for physical and biological nanoscale systems and their applications. Springer, Cham, pp 267–285

    Chapter  Google Scholar 

  16. Pérez-Regidor L, Zarioh M, Ortega L et al (2016) Virtual screening approaches towards the discovery of toll-like receptor modulators. Int J Mol Sci 17(9):1508. https://pubmed.ncbi.nlm.nih.gov/27618029/

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gentile F, Deriu MA, Barakat KH et al (2018) A novel interaction between the TLR7 and a colchicine derivative revealed through a computational and experimental study. Phamaceuticals 11:22

    Article  Google Scholar 

  18. Preto J, Gentile F (2019) Assessing and improving the performance of consensus docking strategies using the DockBox package. J Comput Aided Mol Des 33:817–829

    Article  CAS  PubMed  Google Scholar 

  19. Berman HM (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chemical Computing Group Inc (2019) Molecular operating environment 2019, http://www.chemcomp.com

  22. Arnold K, Bordoli L, Kopp J et al (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  23. Ishida H, Asami J, Zhang Z et al (2021) (2021) Cryo-EM structures of toll-like receptors in complex with UNC93B1. Nat Struct Mol Biol 282(28):173–180

    Article  Google Scholar 

  24. Lyu J, Wang S, Balius TE et al (2019) Ultra-large library docking for discovering new chemotypes. Nature 566:224–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. UC Regents SYBYL MOL2 format, http://www.csb.yale.edu/userguides/datamanip/dock/DOCK_4.0.1/html/Manual.41.html

  26. Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100

    Article  CAS  PubMed  Google Scholar 

  27. Stein RM, Yang Y, Balius TE et al (2021) Property-unmatched decoys in docking benchmarks. J Chem Inf Model 61(2):699–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sterling T, Irwin JJ (2015) ZINC 15 - ligand discovery for everyone. J Chem Inf Model 55:2324–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. The RDKit Documentation — The RDKit 2020.03.1 documentation. https://www.rdkit.org/docs/

  30. Cosconati S, Forli S, Perryman AL et al (2010) Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discov 5:597–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Allen WJ, Balius TE, Mukherjee S et al (2015) DOCK 6: impact of new features and current docking performance. J Comput Chem 36:1132–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  34. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  35. Neudert G, Klebe G (2011) DSX: a knowledge-based scoring function for the assessment of protein-ligand complexes. J Chem Inf Model 51:2731–2745

    Article  CAS  PubMed  Google Scholar 

  36. Houston DR, Walkinshaw MD (2013) Consensus docking: improving the reliability of docking in a virtual screening context. J Chem Inf Model 53:384–390

    Article  CAS  PubMed  Google Scholar 

  37. Madhavi Sastry G, Adzhigirey M, Day T et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234

    Article  CAS  PubMed  Google Scholar 

  38. Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 40:W537–W541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gentile F, Fernandez M, Ban F et al (2021) Automated discovery of noncovalent inhibitors of SARS-CoV-2 Main protease by consensus deep docking of 40 billion small molecules. Chem Sci 12:15960–15974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the PSMN (Pôle Scientifique de Modélisation Numérique) of the ENS de Lyon for the computing resources. F.G. was supported by a University of Ottawa start-up grant and a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jordane Preto or Francesco Gentile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Preto, J., Gentile, F. (2023). Development of Optimal Virtual Screening Strategies to Identify Novel Toll-Like Receptor Ligands Using the DockBox Suite. In: Fallarino, F., Gargaro, M., Manni, G. (eds) Toll-Like Receptors. Methods in Molecular Biology, vol 2700. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3366-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3366-3_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3365-6

  • Online ISBN: 978-1-0716-3366-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics