Skip to main content

Magnetic Nanoparticles for Protein Separation and Purification

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2699))

Abstract

Proteins are essential for various functions such as brain activity and muscle contraction in humans. Even though food is a source of proteins, the bioavailability of proteins in most foods is usually limited due to matrix interaction with other biomolecules. Thus, it is essential to extract these proteins and provide them as a nutraceutical supplement to maintain protein levels and avoid protein deficiency. Hence, protein purification and extraction from natural sources are highly significant in biomedical applications. Chromatography, crude mechanical disruption, use of extractive chemicals, and electrophoresis are some of the methods applied to isolate specific proteins. Even though these methods possess several advantages, they are unable to extract specific proteins with high purity. A suitable alternative is the use of nanoparticles, which can be beneficial in protein purification and extraction. Notably, magnetic iron and iron-based nanoparticles have been employed in protein extraction processes and can be reused via demagnetization due to their magnetic property, smaller size, morphology, high surface-to-volume ratio, and surface charge-mediated property. This chapter is a summary of various magnetic nanoparticles (MNPs) that can be used for the biomolecular separation of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman JR, Falvo MJ (2004) Protein – which is best? J Sports Sci Med 3(3):118–130

    PubMed  PubMed Central  Google Scholar 

  2. Skowyra A, MacNeill SA (2012) Identification of essential and non-essential single-stranded DNA-binding proteins in a model archaeal organism. Nucleic Acids Res 40(3):1077–1090. https://doi.org/10.1093/nar/gkr838

    Article  CAS  PubMed  Google Scholar 

  3. Papier K, Tong TY, Appleby PN, Bradbury KE, Fensom GK, Knuppel A, Perez-Cornago A, Schmidt JA, Travis RC, Key TJ (2019) Comparison of major protein-source foods and other food groups in meat-eaters and non-meat-eaters in the EPIC-Oxford cohort. Nutrients 11(4):824. https://doi.org/10.3390/nu11040824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ignoul S, Eggermont J (2005) CBS domains: structure, function, and pathology in human proteins. Am J Phys Cell Phys 289(6):C1369–C1378. https://doi.org/10.1152/ajpcell.00282.2005

    Article  CAS  Google Scholar 

  5. Lamprecht R (2019) Regulation of signaling proteins in the brain by light. Prog Neurobiol 180:101638. https://doi.org/10.1016/j.pneurobio.2019.101638

    Article  CAS  PubMed  Google Scholar 

  6. Herzog W (2018) The multiple roles of titin in muscle contraction and force production. Biophys Rev 10(4):1187–1199. https://doi.org/10.1007/s12551-017-0395-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khazaei H, Subedi M, Nickerson M, Martínez-Villaluenga C, Frias J, Vandenberg A (2019) Seed protein of lentils: current status, progress, and food applications. Foods 8(9):391. https://doi.org/10.3390/foods8090391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nguyen TT, Heimann K, Zhang W (2020) Protein recovery from underutilised marine bioresources for product development with nutraceutical and pharmaceutical bioactivities. Mar Drugs 18(8):391. https://doi.org/10.3390/md18080391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang C-h (2021) Strategies to utilize naturally occurring protein architectures as nanovehicles for hydrophobic nutraceuticals. Food Hydrocoll 112:106344. https://doi.org/10.1016/j.foodhyd.2020.106344

    Article  CAS  Google Scholar 

  10. Pidugu VK, Pidugu HB, Wu M-M, Liu C-J, Lee T-C (2019) Emerging functions of human IFIT proteins in cancer. Front Mol Biosci 6:148. https://doi.org/10.3389/fmolb.2019.00148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yan W, Chen Z-Y, Chen J-Q, Chen H-M (2018) LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson’s disease through stabilizing PINK1 protein. Biochem Biophys Res Commun 496(4):1019–1024. https://doi.org/10.1016/j.bbrc.2017.12.149

    Article  CAS  PubMed  Google Scholar 

  12. Dranca F, Oroian M (2018) Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Res Int 113:327–350. https://doi.org/10.1016/j.foodres.2018.06.065

    Article  CAS  PubMed  Google Scholar 

  13. Mostafavi SM, Eissazadeh S, Piryaei M (2019) Comparison of polymer and ceramic membrane in the separation of proteins in aqueous solution through liquid chromatography. J Comput Theor Nanosci 16(1):157–164. https://doi.org/10.1166/jctn.2019.7716

    Article  CAS  Google Scholar 

  14. Kdidi S, Vaca-Medina G, Peydecastaing J, Oukarroum A, Fayoud N, Barakat A (2019) Electrostatic separation for sustainable production of rapeseed oil cake protein concentrate: effect of mechanical disruption on protein and lignocellulosic fiber separation. Powder Technol 344:10–16. https://doi.org/10.1016/j.powtec.2018.11.107

    Article  CAS  Google Scholar 

  15. Li P, Thankamony RL, Li X, Li Z, Liu X, Lai Z (2021) Nanoporous polyethersulfone membranes prepared by mixed solvent phase separation method for protein separation. J Membr Sci 635:119507. https://doi.org/10.1016/j.memsci.2021.119507

    Article  CAS  Google Scholar 

  16. Meleady P (2018) Two-dimensional gel electrophoresis and 2D-DIGE. In: Ohlendieck K (ed) Difference gel electrophoresis: methods and protocols. Springer, New York, pp 3–14. https://doi.org/10.1007/978-1-4939-7268-5_1

    Chapter  Google Scholar 

  17. Ghosh R (2002) Protein separation using membrane chromatography: opportunities and challenges. J Chromatogr A 952(1):13–27. https://doi.org/10.1016/S0021-9673(02)00057-2

    Article  CAS  PubMed  Google Scholar 

  18. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun (9):941–949

    Google Scholar 

  20. Fatima H, Kim K-S (2017) Magnetic nanoparticles for bioseparation. Korean J Chem Eng 34(3):589–599

    Article  CAS  Google Scholar 

  21. Hasanzadeh M, Shadjou N, de la Guardia M (2015) Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. TrAC Trends Anal Chem 72:1–9

    Article  CAS  Google Scholar 

  22. Chen C, Ge J, Gao Y, Chen L, Cui J, Zeng J, Gao M (2021) Ultrasmall superparamagnetic iron oxide nanoparticles: a next generation contrast agent for magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 14:e1740

    Article  PubMed  Google Scholar 

  23. Bai C, Jia Z, Song L, Zhang W, Chen Y, Zang F, Ma M, Gu N, Zhang Y (2018) Time-dependent T1–T2 switchable magnetic resonance imaging realized by c(RGDyK) modified ultrasmall Fe3O4 nanoprobes. Adv Funct Mater 28(32):1802281

    Article  Google Scholar 

  24. Khalil MI (2015) Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron (III) salts as precursors. Arab J Chem 8(2):279–284

    Article  CAS  Google Scholar 

  25. Liang Z, Wang Q, Liao H, Zhao M, Lee J, Yang C, Li F, Ling D (2021) Artificially engineered antiferromagnetic nanoprobes for ultra-sensitive histopathological level magnetic resonance imaging. Nat Commun 12(1):1–11

    Article  CAS  Google Scholar 

  26. Meiorin C, Scherzer SL, Mucci V, Actis DG, Mendoza Zelis P, Schubert DW, Mosiewicki MA, Aranguren MI (2021) Nanocomposites based on waterborne polyurethane matrix and Fe3O4 nanoparticles: synthesis and characterization. Adv Eng Mater 23(10):2100381

    Article  CAS  Google Scholar 

  27. Paz-Cedeno FR, Carceller JM, Iborra S, Donato RK, Godoy AP, de Paula AV, Monti R, Corma A, Masarin F (2021) Magnetic graphene oxide as a platform for the immobilization of cellulases and xylanases: ultrastructural characterization and assessment of lignocellulosic biomass hydrolysis. Renew Energy 164:491–501

    Article  CAS  Google Scholar 

  28. Löwa N, Meier F, Welz R, Kratz H, Paysen H, Schnorr J, Taupitz M, Klein T, Wiekhorst F (2021) Novel platform for the multidimensional analysis of magnetic nanoparticles. J Magn Magn Mater 518:167443

    Article  Google Scholar 

  29. Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S (2018) Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater 7(5):1700845

    Article  Google Scholar 

  30. Gul S, Khan SB, Rehman IU, Khan MA, Khan MI (2019) A comprehensive review of magnetic nanomaterials modern day theranostics. Front Mater Sci 6:179

    Article  Google Scholar 

  31. Al-Anazi A (2022) Iron-based magnetic nanomaterials in environmental and energy applications: a short review. Curr Opin Chem Eng 36:100794

    Article  Google Scholar 

  32. Niculescu A-G, Chircov C, Grumezescu AM (2021) Magnetite nanoparticles: synthesis methods – a comparative review. Methods 199:16. https://doi.org/10.1016/j.ymeth.2021.04.018

    Article  CAS  PubMed  Google Scholar 

  33. Bajpai AK, Gupta R (2010) Synthesis and characterization of magnetite (Fe3O4)—polyvinyl alcohol-based nanocomposites and study of superparamagnetism. Polym Compos 31(2):245–255

    CAS  Google Scholar 

  34. Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19(35):6274–6293

    Article  CAS  Google Scholar 

  35. Rajakaruna TPB, Udawatte CP, Chandrajith R, Rajapakse RMG (2021) Formulation of iron oxide and oxy-hydroxide nanoparticles from ilmenite sand through a low-temperature process. ACS Omega 6(28):17824–17830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Santoso UT, Mujiyanti DR, Ariyani D, Waskito J (2021) Room temperature synthesis of magnetite particles by an oil membrane layer-assisted reverse co-precipitation approach. Adv Mater Res 1162:41–46

    Article  Google Scholar 

  37. Sanz B, Calatayud MP, Cassinelli N, Ibarra MR, Goya GF (2015) Long-term stability and reproducibility of magnetic colloids are key issues for steady values of specific power absorption over time. Eur J Inorg Chem 27:4524–4531

    Article  Google Scholar 

  38. Segovia LCA, Agudelo JID, Glisoni RJ, Acha C, De Zan MM, Rintoul I (2020) A multiparametric model for the industrialization of co-precipitation synthesis of nano-commodities. Nanotechnology 31(18):185604

    Article  CAS  Google Scholar 

  39. Wang Y, Miao Y, Li G, Su M, Chen X, Zhang H, Zhang Y, Jiao W, He Y, Yi J (2020) Engineering ferrite nanoparticles with enhanced magnetic response for advanced biomedical applications. Mater Today Adv 8:100119

    Article  Google Scholar 

  40. Zhang Y, Li X, Zhang Y, Wei J, Wang W, Dong C-Z, Xue Y, Liu M, Pei R (2021) Engineered Fe3O4-based nanomaterials for diagnosis and therapy of cancer. New J Chem 45:7918–7941

    Article  CAS  Google Scholar 

  41. Zhou H, Guo M, Li J, Qin F, Wang Y, Liu T, Liu J, Sabet ZF, Wang Y, Liu Y (2021) Hypoxia-triggered self-assembly of ultrasmall iron oxide nanoparticles to amplify the imaging signal of a tumor. J Am Chem Soc 143(4):1846–1853

    Article  CAS  PubMed  Google Scholar 

  42. Ebadi M, Bullo S, Buskara K, Hussein MZ, Fakurazi S, Pastorin G (2020) Release of a liver anticancer drug, sorafenib from its PVA/LDH-and PEG/LDH-coated iron oxide nanoparticles for drug delivery applications. Sci Rep 10(1):1–19

    Article  CAS  Google Scholar 

  43. Li Q, Kartikowati CW, Horie S, Ogi T, Iwaki T, Okuyama K (2017) Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci Rep 7(1):1–7

    Google Scholar 

  44. Filippousi M, Angelakeris M, Katsikini M, Paloura E, Efthimiopoulos I, Wang Y, Zamboulis D, Van Tendeloo G (2014) Surfactant effects on the structural and magnetic properties of iron oxide nanoparticles. J Phys Chem 118(29):16209–16217

    CAS  Google Scholar 

  45. Unni M, Uhl AM, Savliwala S, Savitzky BH, Dhavalikar R, Garraud N, Arnold DP, Kourkoutis LF, Andrew JS, Rinaldi C (2017) Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano 11(2):2284–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tay ZW, Savliwala S, Hensley DW, Fung KLB, Colson C, Fellows BD, Zhou X, Huynh Q, Lu Y, Zheng B (2021) Superferromagnetic nanoparticles enable order-of-magnitude resolution & sensitivity gain in magnetic particle imaging. Small Methods 5(11):2100796

    Article  CAS  Google Scholar 

  47. Wilson RJ, Hui Y, Whittaker AK, Zhao C-X (2021) Facile bioinspired synthesis of iron oxide encapsulating silica nanocapsules. J Colloid Interface Sci 601:78–84

    Article  CAS  PubMed  Google Scholar 

  48. Omelyanchik A, da Silva FG, Gomide G, Kozenkov I, Depeyrot J, Aquino R, Campos AFC, Fiorani D, Peddis D, Rodionova V (2021) Effect of citric acid on the morpho-structural and magnetic properties of ultrasmall iron oxide nanoparticles. J Alloys Compd 883:160779

    Article  CAS  Google Scholar 

  49. Dutta B, Shetake NG, Gawali SL, Barick BK, Barick KC, Babu PD, Pandey BN, Priyadarsini KI, Hassan PA (2018) PEG mediated shape-selective synthesis of cubic Fe3O4 nanoparticles for cancer therapeutics. J Alloys Compd 737:347–355

    Article  CAS  Google Scholar 

  50. Camacho-Fernández JC, Quijano GKG, Severac C, Dague E, Gigoux V, Santoyo-Salazar J, Martinez-Rivas AMR (2021) Nanobiomechanical behavior of Fe3O4@ SiO2 and Fe3O4@ SiO2-NH2 nanoparticles over HeLa cells interfaces. Nanotechnology 32:385702

    Article  Google Scholar 

  51. Baig MM, Yousuf MA, Agboola PO, Khan MA, Shakir I, Warsi MF (2019) Optimization of different wet chemical routes and phase evolution studies of MnFe2O4 nanoparticles. Ceram Int 45(10):12682–12690

    Article  CAS  Google Scholar 

  52. Yousuf MA, Baig MM, Waseem M, Haider S, Shakir I, Khan SU-D, Warsi MF (2019) Low cost micro-emulsion route synthesis of Cr-substituted MnFe2O4 nanoparticles. Ceram Int 45(17):22316–22323

    Article  CAS  Google Scholar 

  53. Wang F, Zhang X, Shao L, Cui Z, Nie T (2015) Synthesis of magnetic Fe3O4/polyamine hybrid microsphere using O/W/O Pickering emulsion droplet as the polymerization micro-reactor. RSC Adv 5(28):22188–22198

    Article  CAS  Google Scholar 

  54. Jin Y, Luo X, Zhang J, Yu Y, An J, Zhang J, Zhao D, Gao K (2021) Electro-magnetic wave absorbing properties study of nano-composites based on Fe3O4. Sci Adv Mater 13(3):447–454

    Article  Google Scholar 

  55. Ivanova AV, Nikitin AA, Gabashvily AN, Vishnevskiy DA, Abakumov MA (2021) Synthesis and intensive analysis of antibody labeled single core magnetic nanoparticles for targeted delivery to the cell membrane. J Magn Magn Mater 521:167487

    Article  CAS  Google Scholar 

  56. Luo Y, Zhou Z, Yue T (2017) Synthesis and characterization of nontoxic chitosan-coated Fe3O4 particles for patulin adsorption in a juice-pH simulation aqueous. Food Chem 221:317–323

    Article  CAS  PubMed  Google Scholar 

  57. Long LQ, Hue TTB, Hoan NX, Cuong LV, Thang PD, Hoang T, Truc TA (2016) Growth mechanism and stability of magnetite nanoparticles synthesized by the hydrothermal method. J Nanosci Nanotechnol 16(7):7373–7379

    Article  CAS  Google Scholar 

  58. Truc TA, Hoan NX, Thuy TT, Ramadass K, Sathish CI, Chinh NT, Trinh ND, Hoang T (2020) Hydrothermal synthesis of cobalt doped magnetite nanoparticles for corrosion protection of epoxy coated reinforced steel. J Nanosci Nanotechnol 20(6):3519–3526

    Article  PubMed  Google Scholar 

  59. Bakr EA, El-Nahass MN, Hamada WM, Fayed TA (2021) Facile synthesis of superparamagnetic Fe3O4@ noble metal core–shell nanoparticles by thermal decomposition and hydrothermal methods: comparative study and catalytic applications. RSC Adv 11(2):781–797

    Article  CAS  Google Scholar 

  60. Chen K, Zeng K, Yang G (2020) Preparation of a Fe3O4-bonded magnetic composite by the hydrothermal method. High Temp Mater Processes 24(1):1–8

    Article  Google Scholar 

  61. Danks AE, Hall SR, Schnepp Z (2016) The evolution of “sol–gel” chemistry as a technique for materials synthesis. Mater Horiz 3(2):91–112

    Article  CAS  Google Scholar 

  62. Chang H, Su H-T (2008) Synthesis and magnetic properties of Ni nanoparticles. Rev Adv Mater Sci 18:667–675

    Google Scholar 

  63. Mody VV, Singh A, Wesley B (2013) Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia. Eur J Nanomed 5(1):11–21

    Article  CAS  Google Scholar 

  64. Sangermano M, Allia P, Tiberto P, Barrera G, Bondioli F, Florini N, Messori M (2013) Photo-cured epoxy networks functionalized with Fe3O4 generated by non-hydrolytic sol–gel process. Macromol Chem Phys 214(4):508–516

    Article  CAS  Google Scholar 

  65. Bidaud C, Berling D, Jamon D, Gamet E, Neveu S, Royer F, Soppera O (2021) Photocrosslinking and photopatterning of magneto-optical nanocomposite sol–gel thin film under deep-UV irradiation. Sci Rep 11(1):1–13

    Article  Google Scholar 

  66. Barrera G, Tiberto P, Allia P, Bonelli B, Esposito S, Marocco A, Pansini M, Leterrier Y (2019) Magnetic properties of nanocomposites. Appl Sci 9(2):212

    Article  CAS  Google Scholar 

  67. Asab G, Zereffa EA, Abdo Seghne T (2020) Synthesis of silica-coated Fe3O4 nanoparticles by microemulsion method: characterization and evaluation of antimicrobial activity. Int J Biomater 2020:4783612

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH (2012) Fe3O4@ SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater 24(23):4572–4580

    Article  CAS  Google Scholar 

  69. Saadat A, Hajiaghababaei L, Badiei A, Ganjali MR, Mohammadi Ziarani G (2019) Amino functionalized silica coated Fe3O4 magnetic nanoparticles as a novel adsorbent for removal of Pb2+ and Cd2+. Pollution 5(4):847–857

    CAS  Google Scholar 

  70. Wu J, Jiang W, Tian R, Deng A (2015) Facile one-pot synthesis of magnetic nanoparticles with controllable morphology and size distribution as targeted biocarriers. In: 2015 IEEE 15th international conference on nanotechnology (IEEE-NANO), Rome, Italy, 2015. IEEE, pp 876–880

    Chapter  Google Scholar 

  71. Fu R, Jin X, Liang J, Zheng W, Zhuang J, Yang W (2011) Preparation of nearly monodispersed Fe3O4/SiO2 composite particles from aggregates of Fe3O4 nanoparticles. J Mater Chem 21(39):15352–15356. https://doi.org/10.1039/C1JM11883H

    Article  CAS  Google Scholar 

  72. Huang L, Gurav DD, Wu S, Xu W, Vedarethinam V, Yang J, Su H, Wan X, Fang Y, Shen B, Price C-AH, Velliou E, Liu J, Qian K (2019) A multifunctional platinum nanoreactor for point-of-care metabolic analysis. Matter 1(6):1669–1680. https://doi.org/10.1016/j.matt.2019.08.014

    Article  Google Scholar 

  73. Vedarethinam V, Huang L, Xu W, Zhang R, Gurav DD, Sun X, Yang J, Chen R, Qian K (2019) Detection and inhibition of bacteria on a dual-functional silver platform. Small 15(3):1803051. https://doi.org/10.1002/smll.201803051

    Article  CAS  Google Scholar 

  74. Yeamsuksawat T, Zhao H, Liang J (2021) Characterization and antimicrobial performance of magnetic Fe3O4@Chitosan@Ag nanoparticles synthesized via suspension technique. Mater Today Commun 28:102481. https://doi.org/10.1016/j.mtcomm.2021.102481

    Article  CAS  Google Scholar 

  75. Wang WJ, Cui QY, Qin T, Sun HH (2018) Preparation of Fe3O4@SiO2@chitosan for the adsorption of malachite green dye. IOP Conf Ser Earth Environ Sci 186:012014. https://doi.org/10.1088/1755-1315/186/3/012014

    Article  Google Scholar 

  76. Umut E (2013) Surface modification of nanoparticles used in biomedical applications. Mod Surf Eng Treat 20:185–208

    Google Scholar 

  77. Khanna L, Verma NK, Tripathi SK (2018) Burgeoning tool of biomedical applications – superparamagnetic nanoparticles. J Alloys Compd 752:332–353

    Article  CAS  Google Scholar 

  78. Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A (2019) Superparamagnetic iron oxide nanoparticles—current and prospective medical applications. Materials 12(4):617

    Article  PubMed  PubMed Central  Google Scholar 

  79. Unterweger H, Dézsi L, Matuszak J, Janko C, Poettler M, Jordan J, Bäuerle T, Szebeni J, Fey T, Boccaccini AR (2018) Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: evaluation of size-dependent imaging properties, storage stability and safety. Int J Nanomedicine 13:1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang W, Xue C, Mao X (2020) Chitosan: structural modification, biological activity and application. Int J Biol Macromol 164:4532–4546

    Article  CAS  PubMed  Google Scholar 

  81. Zhang D, Zuo X, Wang P, Gao W, Pan L (2021) Influence of chitosan modification on self-assembly behavior of Fe3O4 nanoparticles. Appl Nanosci 11(1):21–27. https://doi.org/10.1007/s13204-020-01582-w

    Article  CAS  Google Scholar 

  82. Tokajuk G, Niemirowicz K, Deptuła P, Piktel E, Cieśluk M, Wilczewska AZ, Dąbrowski JR, Bucki R (2017) Use of magnetic nanoparticles as a drug delivery system to improve chlorhexidine antimicrobial activity. Int J Nanomedicine 12:7833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang J, Zou P, Yang L, Cao J, Sun Y, Han D, Yang S, Wang Z, Chen G, Wang B, Kong X (2014) A comprehensive study on the synthesis and paramagnetic properties of PEG-coated Fe3O4 nanoparticles. Appl Surf Sci 303:425–432. https://doi.org/10.1016/j.apsusc.2014.03.018

    Article  CAS  Google Scholar 

  84. Ling W, Wang M, Xiong C, Xie D, Chen Q, Chu X, Qiu X, Li Y, Xiao X (2019) Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles. J Mater Res 34(11):1828–1844

    Article  CAS  Google Scholar 

  85. Zhang J, Yang J, Zhang H, Hu M, Li J, Zhang X (2020) New Span-PEG-composited Fe3O4-CNT as a multifunctional ultrasound contrast agent for inflammation and thrombotic niduses. RSC Adv 10(63):38592–38600. https://doi.org/10.1039/D0RA05401A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jabir MS, Nayef UM, Abdulkadhim WK, Taqi ZJ, Sulaiman GM, Sahib UI, Al-Shammari AM, Wu Y-J, El-Shazly M, Su C-C (2021) Fe3O4 nanoparticles capped with PEG induce apoptosis in breast cancer AMJ13 cells via mitochondrial damage and reduction of NF-κB translocation. J Inorg Organomet Polym Mater 31(3):1241–1259. https://doi.org/10.1007/s10904-020-01791-4

    Article  CAS  Google Scholar 

  87. Min JH, Woo M-K, Yoon HY, Jang JW, Wu JH, Lim C-S, Kim YK (2014) Isolation of DNA using magnetic nanoparticles coated with dimercaptosuccinic acid. Anal Biochem 447:114–118. https://doi.org/10.1016/j.ab.2013.11.018

    Article  CAS  PubMed  Google Scholar 

  88. da Silva RJ, Pedro GC, Gorza FDS, Maciel BG, Ratkovski GP, Mojica-Sánchez LC, Medina-Llamas JC, Chávez-Guajardo AE, de Melo CP (2021) DNA purification using a novel γ-Fe2O3/PEDOT hybrid nanocomposite. Anal Chim Acta 1178:338762. https://doi.org/10.1016/j.aca.2021.338762

    Article  CAS  PubMed  Google Scholar 

  89. Xu J, Chen D, Yang Y, Gong H, Gao W, Xiao H (2021) A one step method for isolation of genomic DNA using multi-amino modified magnetic nanoparticles. RSC Adv 11(6):3324–3332. https://doi.org/10.1039/D0RA09409A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim J, Piao Y, Lee N, Park YI, Lee I-H, Lee J-H, Paik SR, Hyeon T (2010) Magnetic nanocomposite spheres decorated with NiO nanoparticles for a magnetically recyclable protein separation system. Adv Mater 22(1):57–60. https://doi.org/10.1002/adma.200901858

    Article  CAS  PubMed  Google Scholar 

  91. Lee SY, Ahn CY, Lee J, Lee JH, Chang JH (2012) Rapid and selective separation for mixed proteins with thiol functionalized magnetic nanoparticles. Nanoscale Res Lett 7(1):279. https://doi.org/10.1186/1556-276X-7-279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jianlong W, Zanzan Z, Ahsan M, Zhou HS (2010) Magnetic nanoparticle (MNP) enhanced biosensing by surface plasmon resonance (SPR) for portable devices. In: Proceedings of SPIE – the International Society for Optical Engineering. SPIE. https://doi.org/10.1117/12.854488

    Chapter  Google Scholar 

  93. Jia X, Xu M, Wang Y, Ran D, Yang S, Zhang M (2013) Polydopamine-based molecular imprinting on silica-modified magnetic nanoparticles for recognition and separation of bovine hemoglobin. Analyst 138(2):651–658. https://doi.org/10.1039/C2AN36313E

    Article  CAS  PubMed  Google Scholar 

  94. Magnani M, Galluzzi L, Bruce IJ (2006) The use of magnetic nanoparticles in the development of new molecular detection systems. J Nanosci Nanotechnol 6(8):2302–2311. https://doi.org/10.1166/jnn.2006.505

    Article  CAS  PubMed  Google Scholar 

  95. Haghighi AH, Khorasani MT, Faghih Z, Farjadian F (2020) Effects of different quantities of antibody conjugated with magnetic nanoparticles on cell separation efficiency. Heliyon 6(4):e03677. https://doi.org/10.1016/j.heliyon.2020.e03677

    Article  PubMed  PubMed Central  Google Scholar 

  96. Saei A, Asfia S, Kouchakzadeh H, Rahmandoust M (2020) Antibody-modified magnetic nanoparticles as specific high-efficient cell-separation agents. J Biomed Mater Res B 108(6):2633–2642. https://doi.org/10.1002/jbm.b.34595

    Article  CAS  Google Scholar 

  97. Eivazzadeh-Keihan R, Bahreinizad H, Amiri Z, Aliabadi HAM, Salimi-Bani M, Nakisa A, Davoodi F, Tahmasebi B, Ahmadpour F, Radinekiyan F, Maleki A, Hamblin MR, Mahdavi M, Madanchi H (2021) Functionalized magnetic nanoparticles for the separation and purification of proteins and peptides. TrAC Trends Anal Chem 141:116291. https://doi.org/10.1016/j.trac.2021.116291

    Article  CAS  Google Scholar 

  98. Dutta Chowdhury A, Agnihotri N, Doong R-a, De A (2017) Label-free and nondestructive separation technique for isolation of targeted DNA from DNA–protein mixture using magnetic Au–Fe3O4 nanoprobes. Anal Chem 89(22):12244–12251. https://doi.org/10.1021/acs.analchem.7b03095

    Article  CAS  PubMed  Google Scholar 

  99. Demin AM, Valova MS, Pershina AG, Krasnov VP (2019) Immobilization of fluorescent protein TagGFP2 on Fe3O4-based magnetic nanoparticles. Russ Chem Bull 68(5):1088–1095. https://doi.org/10.1007/s11172-019-2524-1

    Article  CAS  Google Scholar 

  100. Aguilar JGS, de Carvalho AKF, Buzetti Simões Bento H, Sato HH (2019) Characterization of magnetic particles of azocasein-iron composite for protease purification. J Magn Magn Mater 486:165288. https://doi.org/10.1016/j.jmmm.2019.165288

    Article  CAS  Google Scholar 

  101. Mahmoudi Gomari M, Saraygord-Afshari N, Farsimadan M, Rostami N, Aghamiri S, Farajollahi MM (2020) Opportunities and challenges of the tag-assisted protein purification techniques: applications in the pharmaceutical industry. Biotechnol Adv 45:107653. https://doi.org/10.1016/j.biotechadv.2020.107653

    Article  CAS  PubMed  Google Scholar 

  102. Iranmanesh M, Hulliger J (2017) Magnetic separation: its application in mining, waste purification, medicine, biochemistry and chemistry. Chem Soc Rev 46(19):5925–5934. https://doi.org/10.1039/C7CS00230K

    Article  CAS  PubMed  Google Scholar 

  103. Kupcik R, Rehulka P, Bilkova Z, Sopha H, Macak JM (2017) New interface for purification of proteins: one-dimensional TiO2 nanotubes decorated by Fe3O4 nanoparticles. ACS Appl Mater Interfaces 9(34):28233–28242. https://doi.org/10.1021/acsami.7b08445

    Article  CAS  PubMed  Google Scholar 

  104. Li S, Yang K, Zhao B, Li X, Liu L, Chen Y, Zhang L, Zhang Y (2016) Epitope imprinting enhanced IMAC (EI-IMAC) for highly selective purification of His-tagged protein. J Mater Chem B 4(11):1960–1967. https://doi.org/10.1039/C5TB02505B

    Article  CAS  PubMed  Google Scholar 

  105. Mirahmadi-Zare SZ, Aboutalebi F, Allafchian M, Pirjamali L, Nasr-Esfahani M-H (2018) Layer by layer coating of NH2-silicate/polycarboxylic acid polymer saturated by Ni2+ onto the super magnetic NiFe2O4 nanoparticles for sensitive and bio-valuable separation of His-tagged proteins. Protein Expr Purif 143:71–76. https://doi.org/10.1016/j.pep.2017.10.015

    Article  CAS  PubMed  Google Scholar 

  106. Mora B, Perez-Valle A, Redondo C, Boyano MD, Morales R (2018) Cost-effective design of high-magnetic moment nanostructures for biotechnological applications. ACS Appl Mater Interfaces 10(9):8165–8172. https://doi.org/10.1021/acsami.7b16779

    Article  CAS  PubMed  Google Scholar 

  107. Mourdikoudis S, Kostopoulou A, LaGrow AP (2021) Magnetic nanoparticle composites: synergistic effects and applications. Adv Sci 8(12):2004951. https://doi.org/10.1002/advs.202004951

    Article  CAS  Google Scholar 

  108. Shirzadi Z, Baharvand H, Nezhati MN, Sajedi RH (2020) Synthesis of nonlinear polymer brushes on magnetic nanoparticles as an affinity adsorbent for His-tagged xylanase purification. Colloid Polym Sci 298(11):1597–1607. https://doi.org/10.1007/s00396-020-04749-7

    Article  CAS  Google Scholar 

  109. Song Y, Fan J-B, Li X, Liang X, Wang S (2019) pH-Regulated heterostructure porous particles enable similarly sized protein separation. Adv Mater 31(16):1900391. https://doi.org/10.1002/adma.201900391

    Article  CAS  Google Scholar 

  110. Zhang M, Wang Y, Zhang Y, Ding L, Zheng J, Xu J (2016) Preparation of magnetic carbon nanotubes with hierarchical copper silicate nanostructure for efficient adsorption and removal of hemoglobin. Appl Surf Sci 375:154–161. https://doi.org/10.1016/j.apsusc.2016.03.081

    Article  CAS  Google Scholar 

  111. Zhang T, Huang B, Elzatahry AA, Alghamdi A, Yue Q, Deng Y (2020) Synthesis of podlike magnetic mesoporous silica nanochains for use as enzyme support and nanostirrer in biocatalysis. ACS Appl Mater Interfaces 12(15):17901–17908. https://doi.org/10.1021/acsami.0c03220

    Article  CAS  PubMed  Google Scholar 

  112. Zou X, Yang F, Sun X, Qin M, Zhao Y, Zhang Z (2018) Functionalized nano-adsorbent for affinity separation of proteins. Nanoscale Res Lett 13(1):165. https://doi.org/10.1186/s11671-018-2531-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Niu Y, Tang Y, Gao R, Chen X, Wang Y, Gao Y, Zhang S, Hussain S, Hao Y, Wang S (2022) One-step synthesis of sustainable montmorillonite-supported, copper-doped magnetic nanoparticles for highly specific separation of His-rich proteins. ACS Sustain Chem Eng 10(16):5341–5351

    Article  CAS  Google Scholar 

  114. Hu T, Liu Y, Gao Y, Zhang J, Xu C (2022) Using magnetic nanoparticles to manipulate biological objects. In: Synthesis and biomedical applications of magnetic nanomaterials. EDP Sciences, pp 325–351

    Chapter  Google Scholar 

  115. Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8(6):1775–1789. https://doi.org/10.1021/bm061197b

    Article  CAS  PubMed  Google Scholar 

  116. Sun C, Vinayak MV, Cheng S, Hu W (2021) Facile functionalization strategy for ultrasensitive organic protein biochips in multi-biomarker determination. Anal Chem 93(32):11305–11311. https://doi.org/10.1021/acs.analchem.1c02601

    Article  CAS  PubMed  Google Scholar 

  117. Ezealigo BN, Ezealigo US, Ighodalo KI, Ezema FI (2022) Iron oxide nanoparticles: current and future applications in nanomedicine. In: Fundamentals and industrial applications of magnetic nanoparticles. Elsevier, pp 349–392

    Chapter  Google Scholar 

  118. Mohamed SA, Al-Harbi MH, Almulaiky YQ, Ibrahim IH, El-Shishtawy RM (2017) Immobilization of horseradish peroxidase on Fe3O4 magnetic nanoparticles. Electron J Biotechnol 27:84–90

    Article  CAS  Google Scholar 

  119. Yoo C-H, Yu J-K, Seong Y, Choi J-K (2020) Microarrays incorporating gold grid patterns for protein quantification. ACS Omega 5(27):16664–16669. https://doi.org/10.1021/acsomega.0c01549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cha J, Kwon I (2018) Purification-free, target-selective immobilization of a protein from cell lysates. Biotechnol J 13(7):1700739. https://doi.org/10.1002/biot.201700739

    Article  CAS  Google Scholar 

  121. Steen Redeker E, Ta DT, Cortens D, Billen B, Guedens W, Adriaensens P (2013) Protein engineering for directed immobilization. Bioconjug Chem 24(11):1761–1777. https://doi.org/10.1021/bc4002823

    Article  CAS  PubMed  Google Scholar 

  122. Jeon M, Jung S, Park S (2018) Facile covalent bio-conjugation of hydroxyapatite. New J Chem 42(18):14870–14875. https://doi.org/10.1039/C8NJ02766H

    Article  CAS  Google Scholar 

  123. Cheng G, Xing J, Pi Z, Liu S, Liu Z, Song F (2019) α-Glucosidase immobilization on functionalized Fe3O4 magnetic nanoparticles for screening of enzyme inhibitors. Chin Chem Lett 30(3):656–659. https://doi.org/10.1016/j.cclet.2018.12.003

    Article  CAS  Google Scholar 

  124. Wang H, Huang J, Wang C, Li D, Ding L, Han Y (2011) Immobilization of glucose oxidase using CoFe2O4/SiO2 nanoparticles as carrier. Appl Surf Sci 257(13):5739–5745. https://doi.org/10.1016/j.apsusc.2011.01.088

    Article  CAS  Google Scholar 

  125. Liebich VJ, Avrutina O, Habermann J, Hillscher LM, Langhans M, Meckel T, Biesalski M, Kolmar H (2021) Toward fabrication of bioactive papers: covalent immobilization of peptides and proteins. Biomacromolecules 22(7):2954–2962. https://doi.org/10.1021/acs.biomac.1c00354

    Article  CAS  PubMed  Google Scholar 

  126. Xia C, Lu J, Xu B, Hu X, Jing Y, Yang L, Li X, Zhou W, Long G, Liao F, Yang X (2019) Design and characterization of a labeling reagent for covalent immobilization of glutathione-S-transferase. Nanosci Nanotechnol Lett 11(11):1547–1560. https://doi.org/10.1166/nnl.2019.3044

    Article  CAS  Google Scholar 

  127. Jin X, Ye Q, Wang C-W, Wu Y, Ma K, Yu S, Wei N, Gao H (2021) Magnetic nanoplatforms for covalent protein immobilization based on Spy chemistry. ACS Appl Mater Interfaces 13(37):44147–44156. https://doi.org/10.1021/acsami.1c14670

    Article  CAS  PubMed  Google Scholar 

  128. Tam JO, de Puig H, Yen C-w, Bosch I, Gómez-Márquez J, Clavet C, Hamad-Schifferli K, Gehrke L (2017) A comparison of nanoparticle-antibody conjugation strategies in sandwich immunoassays. J Immunoassay Immunochem 38(4):355–377. https://doi.org/10.1080/15321819.2016.1269338

    Article  CAS  PubMed  Google Scholar 

  129. Lu L, Duong VT, Shalash AO, Skwarczynski M, Toth I (2021) Chemical conjugation strategies for the development of protein-based subunit nanovaccines. Vaccine 9(6):563. https://doi.org/10.3390/vaccines9060563

    Article  CAS  Google Scholar 

  130. Cencic R, Pelletier J (2018) A cautionary note on the use of cap analogue affinity resins. Anal Biochem 560:24–29. https://doi.org/10.1016/j.ab.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  131. Khan M, Subramaniam R, Desveaux D (2021) Biotin-based proximity labeling of protein complexes in planta. In: Sanchez-Serrano JJ, Salinas J (eds) Arabidopsis protocols. Springer US, New York, pp 425–440. https://doi.org/10.1007/978-1-0716-0880-7_21

    Chapter  Google Scholar 

  132. Lu B, Li C, Chen Q, Song J (2018) ProBAPred: inferring protein–protein binding affinity by incorporating protein sequence and structural features. J Bioinform Comput Biol 16(4):1850011. https://doi.org/10.1142/S0219720018500117

    Article  CAS  PubMed  Google Scholar 

  133. Sergeeva AP, Katsamba PS, Cosmanescu F, Brewer JJ, Ahlsen G, Mannepalli S, Shapiro L, Honig B (2020) DIP/Dpr interactions and the evolutionary design of specificity in protein families. Nat Commun 11(1):2125. https://doi.org/10.1038/s41467-020-15981-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yang Y, He M, Wei T, Sun J, Wu S, Gao T, Guo Z (2020) Photo-affinity pulling down of low-affinity binding proteins mediated by post-translational modifications. Anal Chim Acta 1107:164–171. https://doi.org/10.1016/j.aca.2020.02.016

    Article  CAS  PubMed  Google Scholar 

  135. Zheng Z, Chu B, Kong Q, Chen X, Ke M, Qin Y, Lu Y, Feng S, Tian R (2019) High-throughput phosphotyrosine protein complexes screening by photoaffinity-engineered protein scaffold-based forward-phase protein array. Anal Chem 91(15):10026–10032. https://doi.org/10.1021/acs.analchem.9b01845

    Article  CAS  PubMed  Google Scholar 

  136. Feczkó T, Muskotál A, Gál L, Szépvölgyi J, Sebestyén A, Vonderviszt F (2008) Synthesis of Ni–Zn ferrite nanoparticles in radiofrequency thermal plasma reactor and their use for purification of histidine-tagged proteins. J Nanopart Res 10(1):227–232. https://doi.org/10.1007/s11051-008-9429-5

    Article  CAS  Google Scholar 

  137. Bucak S, Jones DA, Laibinis PE, Hatton TA (2003) Protein separations using colloidal magnetic nanoparticles. Biotechnol Prog 19(2):477–484. https://doi.org/10.1021/bp0200853

    Article  CAS  PubMed  Google Scholar 

  138. Tavakoli Z, Rasekh B, Yazdian F, Maghsoudi A, Soleimani M, Mohammadnejad J (2019) One-step separation of the recombinant protein by using the amine-functionalized magnetic mesoporous silica nanoparticles; an efficient and facile approach. Int J Biol Macromol 135:600–608. https://doi.org/10.1016/j.ijbiomac.2019.05.114

    Article  CAS  PubMed  Google Scholar 

  139. Xu H, Sun T, Huang Y, Song L, Li Z, Wang W (2018) Outstanding performance of novel magnetic beads for efficient purification of His-tagged proteins. Nanosci Nanotechnol Lett 10(3):435–439. https://doi.org/10.1166/nnl.2018.2669

    Article  Google Scholar 

  140. Diao X, Chen H, Zhang G, Zhang F, Fan X (2012) Magnetic carbon nanotubes for protein separation. J Nanomater 2012:Article 57. https://doi.org/10.1155/2012/806019

    Article  CAS  Google Scholar 

  141. Sun S, Ma M, Qiu N, Huang X, Cai Z, Huang Q, Hu X (2011) Affinity adsorption and separation behaviors of avidin on biofunctional magnetic nanoparticles binding to iminobiotin. Colloids Surf B Biointerfaces 88(1):246–253. https://doi.org/10.1016/j.colsurfb.2011.06.039

    Article  CAS  PubMed  Google Scholar 

  142. Chang M, Qin Q, Wang B, Xia T, Lv W, Sun X, Shi X, Xu G (2019) Carboxymethylated polyethylenimine modified magnetic nanoparticles specifically for purification of His-tagged protein. J Sep Sci 42(3):744–753. https://doi.org/10.1002/jssc.201800969

    Article  CAS  PubMed  Google Scholar 

  143. Kannan K, Mukherjee J, Gupta MN (2013) Use of polyethyleneimine coated Fe3O4 nanoparticles as an ion-exchanger for protein separation. Sci Adv Mater 5(10):1477–1484. https://doi.org/10.1166/sam.2013.1608

    Article  CAS  Google Scholar 

  144. Law HCH, Kong RPW, Li M, Szeto SSW, Chu IK (2021) Implementation of a multiple-fraction concatenation strategy in an online two-dimensional high-/low-pH reversed-phase/reversed-phase liquid chromatography platform for qualitative and quantitative shotgun proteomic analyses. J Mass Spectrom 56(4):e4591. https://doi.org/10.1002/jms.4591

    Article  CAS  Google Scholar 

  145. Song Y, Dong X, Shang D, Zhang X, Li X, Liang X, Wang S (2021) Unusual nanofractal microparticles for rapid protein capture and release. Small 17(36):2102802. https://doi.org/10.1002/smll.202102802

    Article  CAS  Google Scholar 

  146. Guo Y, Li K, Gao Y, Zhao S, Shi M, Li J, Liu Z, Wang Z, He L (2021) CLEC3B identified as a potential lung cancer biomarker in serum by Aptamer-Capture Technology. ChemistrySelect 6(22):5640–5645. https://doi.org/10.1002/slct.202100605

    Article  CAS  Google Scholar 

  147. Wang W, Zhou F, Cheng X, Su Z, Guo H (2020) High-efficiency Ni2+-NTA/PAA magnetic beads with specific separation on His-tagged protein. IET Nanobiotechnol 14(1):67–72

    Article  PubMed  Google Scholar 

  148. Ding F, Zhao Y, Liu H, Zhang W (2020) Core–shell magnetic microporous covalent organic framework with functionalized Ti(iv) for selective enrichment of phosphopeptides. Analyst 145(12):4341–4351. https://doi.org/10.1039/D0AN00038H

    Article  CAS  PubMed  Google Scholar 

  149. Gädke J, Kleinfeldt L, Schubert C, Rohde M, Biedendieck R, Garnweitner G, Krull R (2017) In situ affinity purification of his-tagged protein A from Bacillus megaterium cultivation using recyclable superparamagnetic iron oxide nanoparticles. J Biotechnol 242:55–63. https://doi.org/10.1016/j.jbiotec.2016.11.018

    Article  CAS  PubMed  Google Scholar 

  150. Gädke J, Thies J-W, Kleinfeldt L, Kalinin A, Starke G, Lakowitz A, Biedendieck R, Garnweitner G, Dietzel A, Krull R (2017) Integrated in situ-purification of recombinant proteins from Bacillus megaterium cultivation using SPION in stirred tank reactors. Biochem Eng J 126:58–67. https://doi.org/10.1016/j.bej.2017.07.001

    Article  CAS  Google Scholar 

  151. Park SJ, Kim S, Kim SH, Park KM, Hwang BH (2018) His-tagged protein immobilization on cationic ferrite magnetic nanoparticles. Korean J Chem Eng 35(6):1297–1302. https://doi.org/10.1007/s11814-018-0043-7

    Article  CAS  Google Scholar 

  152. Rashid Z, Ghahremanzadeh R, Nejadmoghaddam M-R, Nazari M, Shokri M-R, Naeimi H, Zarnani A-H (2017) Nickel-Salen supported paramagnetic nanoparticles for 6-His-target recombinant protein affinity purification. J Chromatogr A 1490:47–53. https://doi.org/10.1016/j.chroma.2017.02.014

    Article  CAS  PubMed  Google Scholar 

  153. Tsolakis AC, Halevas E, Vouroutzis N, Koliakos GG, Salifoglou A, Litsardakis G (2017) Magnetic fluorescent nanoparticles binding to amyloid-beta peptide: silica-coated, thioflavin-T functionalized iron oxide. IEEE Trans Magn 53(11):1–4. https://doi.org/10.1109/TMAG.2017.2715841

    Article  Google Scholar 

  154. Amiri S, Mehrnia MR, Sobhanifard S, Pourasgharian Roudsari F, Hoseini S-N (2017) Evaluation of agarose-entrapped magnetic nanoparticles influence on protein adsorption isotherm and kinetics using nickel-iminodiacetic acid ligand. Sep Purif Technol 188:423–430. https://doi.org/10.1016/j.seppur.2017.07.030

    Article  CAS  Google Scholar 

  155. Arai MA, Kobatake E, Koyano T, Kowithayakorn T, Kato S, Ishibashi M (2009) A method for the rapid discovery of naturally occurring products by proteins immobilized on magnetic beads and reverse affinity chromatography. Chem Asian J 4(12):1802–1808. https://doi.org/10.1002/asia.200900357

    Article  CAS  PubMed  Google Scholar 

  156. Brechmann NA, Eriksson P-O, Eriksson K, Oscarsson S, Buijs J, Shokri A, Hjälm G, Chotteau V (2019) Pilot-scale process for magnetic bead purification of antibodies directly from non-clarified CHO cell culture. Biotechnol Prog 35(3):e2775. https://doi.org/10.1002/btpr.2775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Frenzel A, Bergemann C, Köhl G, Reinard T (2003) Novel purification system for 6xHis-tagged proteins by magnetic affinity separation. J Chromatogr B 793(2):325–329. https://doi.org/10.1016/S1570-0232(03)00332-5

    Article  CAS  Google Scholar 

  158. Xiao X, Yang X, Liu T, Chen Z, Chen L, Li H, Deng L (2007) Preparing a highly specific inert immunomolecular-magnetic beads for rapid detection and separation of S. aureus and group G Streptococcus. Appl Microbiol Biotechnol 75(5):1209–1216. https://doi.org/10.1007/s00253-007-0921-0

    Article  CAS  PubMed  Google Scholar 

  159. Zhu X, Duan D, Publicover NG (2010) Magnetic bead based assay for C-reactive protein using quantum-dot fluorescence labeling and immunoaffinity separation. Analyst 135(2):381–389. https://doi.org/10.1039/B918623A

    Article  CAS  PubMed  Google Scholar 

  160. Ebeler M, Lind O, Norrman N, Palmgren R, Franzreb M (2018) One-step integrated clarification and purification of a monoclonal antibody using Protein A Mag Sepharose beads and a cGMP-compliant high-gradient magnetic separator. New Biotechnol 42:48–55. https://doi.org/10.1016/j.nbt.2018.02.007

    Article  CAS  Google Scholar 

  161. Ebeler M, Pilgram F, Wolz K, Grim G, Franzreb M (2018) Magnetic separation on a new level: characterization and performance prediction of a cGMP compliant “rotor-stator” high-gradient magnetic separator. Biotechnol J 13(2):1700448. https://doi.org/10.1002/biot.201700448

    Article  CAS  Google Scholar 

  162. Ge W, Encinas A, Araujo E, Song S (2017) Magnetic matrices used in high gradient magnetic separation (HGMS): a review. Results Phys 7:4278–4286. https://doi.org/10.1016/j.rinp.2017.10.055

    Article  Google Scholar 

  163. Gomes CSG, Fashina A, Fernández-Castané A, Overton TW, Hobley TJ, Theodosiou E, Thomas ORT (2018) Magnetic hydrophobic-charge induction adsorbents for the recovery of immunoglobulins from antiserum feedstocks by high-gradient magnetic fishing. J Chem Technol Biotechnol 93(7):1901–1915. https://doi.org/10.1002/jctb.5599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Li W, Yang L, Dong T, Xing H, Wang W, Yang Y, Liu H (2019) Gas-assisted low-field magnetic separation for large scale continuous magnetic bio-separation process. AICHE J 65(1):175–183. https://doi.org/10.1002/aic.16389

    Article  CAS  Google Scholar 

  165. Pearlman SI, Leelawong M, Richardson KA, Adams NM, Russ PK, Pask ME, Wolfe AE, Wessely C, Haselton FR (2020) Low-resource nucleic acid extraction method enabled by high-gradient magnetic separation. ACS Appl Mater Interfaces 12(11):12457–12467. https://doi.org/10.1021/acsami.9b21564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Schwaminger SP, Blank-Shim SA, Scheifele I, Pipich V, Fraga-García P, Berensmeier S (2019) Design of interactions between nanomaterials and proteins: a highly affine peptide tag to bare iron oxide nanoparticles for magnetic protein separation. Biotechnol J 14(3):1800055. https://doi.org/10.1002/biot.201800055

    Article  CAS  Google Scholar 

  167. Schwaminger SP, Fraga-García P, Blank-Shim SA, Straub T, Haslbeck M, Muraca F, Dawson KA, Berensmeier S (2019) Magnetic one-step purification of His-tagged protein by bare iron oxide nanoparticles. ACS Omega 4(2):3790–3799. https://doi.org/10.1021/acsomega.8b03348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. El-Shishtawy RM, Mohamed SA, Asiri AM, Ahmed NSE (2020) Synthesis of hemicyanine-based chitosan ligands in dye-affinity chromatography for the purification of chewing stick peroxidase. Int J Biol Macromol 148:401–414. https://doi.org/10.1016/j.ijbiomac.2020.01.088

    Article  CAS  PubMed  Google Scholar 

  169. Fa Y, Zhang J, Zhao H, Liu H (2019) [Progress in separation and purification of nattokinase and its enzyme activity determination]. Se Pu 37(3):274–278. https://doi.org/10.3724/sp.j.1123.2018.11010

  170. Franke B, Frigård T, Grzesiek S, Isogai S (2020) Versatile modules enable automated multi-column purifications on the ÄKTA pure chromatography system. J Chromatogr A 1618:460846. https://doi.org/10.1016/j.chroma.2019.460846

    Article  CAS  PubMed  Google Scholar 

  171. Kip Ç, Tosun RB, Alpaslan S, Koçer İ, Çelik E, Tuncel A (2019) Ni(II)-decorated porous titania microspheres as a stationary phase for column chromatography applications: highly selective purification of hemoglobin from human blood. Talanta 200:100–106. https://doi.org/10.1016/j.talanta.2019.03.045

    Article  CAS  PubMed  Google Scholar 

  172. Biswas A, Cheng HN, Kim S, Alves CR, Furtado RF (2020) Hydrophobic modification of cashew gum with alkenyl succinic anhydride. Polymers 12(3):514. https://doi.org/10.3390/polym12030514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Espina-Benitez MB, Randon J, Demesmay C, Dugas V (2018) Back to BAC: insights into boronate affinity chromatography interaction mechanisms. Sep Purif Rev 47(3):214–228. https://doi.org/10.1080/15422119.2017.1365085

    Article  CAS  Google Scholar 

  174. Guo P-F, Wang X-M, Wang M-M, Yang T, Chen M-L, Wang J-H (2019) Two-dimensional titanate-based zwitterionic hydrophilic sorbent for the selective adsorption of glycoproteins. Anal Chim Acta 1088:72–78. https://doi.org/10.1016/j.aca.2019.08.041

    Article  CAS  PubMed  Google Scholar 

  175. Bohmer N, Demarmels N, Tsolaki E, Gerken L, Keevend K, Bertazzo S, Lattuada M, Herrmann IK (2017) Removal of cells from body fluids by magnetic separation in batch and continuous mode: influence of bead size, concentration, and contact time. ACS Appl Mater Interfaces 9(35):29571–29579. https://doi.org/10.1021/acsami.7b10140

    Article  CAS  PubMed  Google Scholar 

  176. Xia HF, Zhou TJ, Du YX, Wang YJ, Shi CH, Wood DW (2020) Improved protein purification system based on C-terminal cleavage of Npu DnaE split intein. Bioprocess Biosyst Eng 43(11):1931–1941. https://doi.org/10.1007/s00449-020-02382-w

    Article  CAS  PubMed  Google Scholar 

  177. Zarrineh M, Mashhadi IS, Farhadpour M, Ghassempour A (2020) Mechanism of antibodies purification by protein A. Anal Biochem 609:113909. https://doi.org/10.1016/j.ab.2020.113909

    Article  CAS  PubMed  Google Scholar 

  178. Figueroa-Espí V, Alvarez-Paneque A, Torrens M, Otero-González AJ, Reguera E (2011) Conjugation of manganese ferrite nanoparticles to an anti Sticholysin monoclonal antibody and conjugate applications. Colloids Surf A Physicochem Eng Asp 387(1):118–124. https://doi.org/10.1016/j.colsurfa.2011.08.008

    Article  CAS  Google Scholar 

  179. Trang VT, Tam LT, Quy NV, Huy TQ, Vinh LK, Tung LM, Le A, Phan VN (2018) Preparation and characterization of aminosilane-functionalized magnetic antibody conjugates for bacterial recognition and capture. IEEE Trans Magn 54(6):1–4. https://doi.org/10.1109/TMAG.2018.2822320

    Article  Google Scholar 

  180. Mahajan R, Rouhi M, Shinde S, Bedwell T, Incel A, Mavliutova L, Piletsky S, Nicholls IA, Sellergren B (2019) Highly efficient synthesis and assay of protein-imprinted nanogels by using magnetic templates. Angew Chem Int Ed 58(3):727–730. https://doi.org/10.1002/anie.201805772

    Article  CAS  Google Scholar 

  181. Mostafaei M, Hosseini SN, Khatami M, Javidanbardan A, Sepahy AA, Asadi E (2018) Isolation of recombinant Hepatitis B surface antigen with antibody-conjugated superparamagnetic Fe3O4/SiO2 core-shell nanoparticles. Protein Expr Purif 145:1–6. https://doi.org/10.1016/j.pep.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  182. Lim J, Choi M, Lee H, Kim Y-H, Han J-Y, Lee ES, Cho Y (2019) Direct isolation and characterization of circulating exosomes from biological samples using magnetic nanowires. J Nanobiotechnol 17(1):1–12

    Article  Google Scholar 

  183. Eivazzadeh-Keihan R, Bahreinizad H, Amiri Z, Aliabadi HAM, Salimi-Bani M, Nakisa A, Davoodi F, Tahmasebi B, Ahmadpour F, Radinekiyan F (2021) Functionalized magnetic nanoparticles for the separation and purification of proteins and peptides. TrAC Trends Anal Chem 141:116291

    Article  CAS  Google Scholar 

  184. Zhong J, Rosch EL, Viereck T, Schilling M, Ludwig F (2021) Toward rapid and sensitive detection of SARS-CoV-2 with functionalized magnetic nanoparticles. ACS Sens 6(3):976–984

    Article  CAS  PubMed  Google Scholar 

  185. Singh K, Nalabotala R, Koo KM, Bose S, Nayak R, Shiddiky MJA (2021) Separation of distinct exosome subpopulations: isolation and characterization approaches and their associated challenges. Analyst 146(12):3731–3749

    Article  CAS  PubMed  Google Scholar 

  186. Pham QN, Winter M, Milanova V, Young C, Condina MR, Hoffmann P, Pham NTH, Tung TT, Losic D, Thierry B (2022) Magnetic enrichment of immuno-specific extracellular vesicles for mass spectrometry using biofilm-derived iron oxide nanowires. bioRxiv. https://doi.org/10.1101/2022.05.01.490183

  187. González-Guerrero AB, Maldonado J, Dante S, Grajales D, Lechuga LM (2017) Direct and label-free detection of the human growth hormone in urine by an ultrasensitive bimodal waveguide biosensor. J Biophotonics 10(1):61–67. https://doi.org/10.1002/jbio.201600154

    Article  CAS  PubMed  Google Scholar 

  188. Chaudhuri S, Korten T, Korten S, Milani G, Lana T, te Kronnie G, Diez S (2018) Label-free detection of microvesicles and proteins by the bundling of gliding microtubules. Nano Lett 18(1):117–123. https://doi.org/10.1021/acs.nanolett.7b03619

    Article  CAS  PubMed  Google Scholar 

  189. Lu P, Zhang D, Chai Y, Yu C, Wang X, Tang Y, Ge M, Yao L (2019) Regulatory-sequence mechanical biosensor: a versatile platform for investigation of G-quadruplex/label-free protein interactions and tunable protein detection. Anal Chim Acta 1045:1–9. https://doi.org/10.1016/j.aca.2018.09.019

    Article  CAS  PubMed  Google Scholar 

  190. Xue J, Yi J, Zhou H (2021) Label-free fluorescence molecular beacon probes based on G-triplex DNA and thioflavin T for protein detection. Molecules 26(10):2962. https://doi.org/10.3390/molecules26102962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Antfolk M, Kim SH, Koizumi S, Fujii T, Laurell T (2017) Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system. Sci Rep 7(1):46507. https://doi.org/10.1038/srep46507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Cushing K, Undvall E, Ceder Y, Lilja H, Laurell T (2018) Reducing WBC background in cancer cell separation products by negative acoustic contrast particle immuno-acoustophoresis. Anal Chim Acta 1000:256–264. https://doi.org/10.1016/j.aca.2017.11.064

    Article  CAS  PubMed  Google Scholar 

  193. Hu X, Zang X, Lv Y (2021) Detection of circulating tumor cells: advances and critical concerns (Review). Oncol Lett 21(5):422. https://doi.org/10.3892/ol.2021.12683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Leung C-H, Wu K-J, Li G, Wu C, Ko C-N, Ma D-L (2019) Application of label-free techniques in microfluidic for biomolecules detection and circulating tumor cells analysis. TrAC Trends Anal Chem 117:78–83. https://doi.org/10.1016/j.trac.2019.06.003

    Article  CAS  Google Scholar 

  195. Liu Y, Zhao W, Cheng R, Puig A, Hodgson J, Egan M, Cooper Pope CN, Nikolinakos PG, Mao L (2021) Label-free inertial-ferrohydrodynamic cell separation with high throughput and resolution. Lab Chip 21(14):2738–2750. https://doi.org/10.1039/D1LC00282A

    Article  CAS  PubMed  Google Scholar 

  196. Lu X, Martin A, Soto F, Angsantikul P, Li J, Chen C, Liang Y, Hu J, Zhang L, Wang J (2019) Parallel label-free isolation of cancer cells using arrays of acoustic microstreaming traps. Adv Mater Technol 4(2):1800374. https://doi.org/10.1002/admt.201800374

    Article  Google Scholar 

  197. Zhao W, Cheng R, Lim SH, Miller JR, Zhang W, Tang W, Xie J, Mao L (2017) Biocompatible and label-free separation of cancer cells from cell culture lines from white blood cells in ferrofluids. Lab Chip 17(13):2243–2255. https://doi.org/10.1039/C7LC00327G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Zhu S, Jiang F, Han Y, Xiang N, Ni Z (2020) Microfluidics for label-free sorting of rare circulating tumor cells. Analyst 145(22):7103–7124. https://doi.org/10.1039/D0AN01148G

    Article  CAS  PubMed  Google Scholar 

  199. Yamasaki K, Drolle E, Nakagawa H, Hisamura R, Ngo W, Jones L (2021) Impact of a low molecular weight hyaluronic acid derivative on contact lens wettability. Cont Lens Anterior Eye 44(3):101334. https://doi.org/10.1016/j.clae.2020.05.003

    Article  PubMed  Google Scholar 

  200. Bhattacharya DS, Svechkarev D, Souchek JJ, Hill TK, Taylor MA, Natarajan A, Mohs AM (2017) Impact of structurally modifying hyaluronic acid on CD44 interaction. J Mater Chem B 5(41):8183–8192. https://doi.org/10.1039/C7TB01895A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Nie W, Zhang B, Yan X, Su L, Wang S, Han G, Han D (2020) Degraded hyaluronic acid-modified magnetic nanoparticles. J Nanomater 2020:1084890. https://doi.org/10.1155/2020/1084890

    Article  CAS  Google Scholar 

  202. Farhan LO, Mehdi WA, Taha EM, Farhan AM, Mehde AA, Özacar M (2021) Various type immobilizations of Isocitrate dehydrogenases enzyme on hyaluronic acid modified magnetic nanoparticles as stable biocatalysts. Int J Biol Macromol 182:217–227. https://doi.org/10.1016/j.ijbiomac.2021.04.026

    Article  CAS  PubMed  Google Scholar 

  203. Zhou Y, Xie Q (2016) Hyaluronic acid-coated magnetic nanoparticles-based selective collection and detection of leukemia cells with quartz crystal microbalance. Sensors Actuators B Chem 223:9–14. https://doi.org/10.1016/j.snb.2015.09.063

    Article  CAS  Google Scholar 

  204. Luan C, Wang H, Han Q, Ma X, Zhang D, Xu Y, Chen B, Li M, Zhao Y (2018) Folic acid-functionalized hybrid photonic barcodes for capture and release of circulating tumor cells. ACS Appl Mater Interfaces 10(25):21206–21212. https://doi.org/10.1021/acsami.8b06882

    Article  CAS  PubMed  Google Scholar 

  205. Li X, Chen J, Liu H, Deng Z, Li J, Ren T, Huang L, Chen W, Yang Y, Zhong S (2019) β-Cyclodextrin coated and folic acid conjugated magnetic halloysite nanotubes for targeting and isolating of cancer cells. Colloids Surf B Biointerfaces 181:379–388

    Article  CAS  PubMed  Google Scholar 

  206. Liu W, Nie L, Li F, Aguilar ZP, Xu H, Xiong Y, Fu F, Xu H (2016) Folic acid conjugated magnetic iron oxide nanoparticles for nondestructive separation and detection of ovarian cancer cells from whole blood. Biomater Sci 4(1):159–166. https://doi.org/10.1039/C5BM00207A

    Article  PubMed  Google Scholar 

  207. Wang W, Liu S, Li C, Wang Y, Yan C (2018) Dual-target recognition sandwich assay based on core-shell magnetic mesoporous silica nanoparticles for sensitive detection of breast cancer cells. Talanta 182:306–313. https://doi.org/10.1016/j.talanta.2018.01.067

    Article  CAS  PubMed  Google Scholar 

  208. Martins PM, Lima AC, Ribeiro S, Lanceros-Mendez S, Martins P (2021) Magnetic nanoparticles for biomedical applications: from the soul of the earth to the deep history of ourselves. ACS Appl Bio Mater 4(8):5839–5870. https://doi.org/10.1021/acsabm.1c00440

    Article  CAS  PubMed  Google Scholar 

  209. Xiao Y, Du J (2020) Superparamagnetic nanoparticles for biomedical applications. J Mater Chem B 8(3):354–367. https://doi.org/10.1039/C9TB01955C

    Article  CAS  PubMed  Google Scholar 

  210. Rümenapp C, Gleich B, Haase A (2012) Magnetic nanoparticles in magnetic resonance imaging and diagnostics. Pharm Res 29(5):1165–1179

    Article  PubMed  Google Scholar 

  211. Shoghi E, Mirahmadi-Zare SZ, Ghasemi R, Asghari M, Poorebrahim M, Nasr-Esfahani M-H (2018) Nanosized aptameric cavities imprinted on the surface of magnetic nanoparticles for high-throughput protein recognition. Microchim Acta 185(4):1–11

    Article  CAS  Google Scholar 

  212. Stueber DD, Villanova J, Aponte I, Xiao Z, Colvin VL (2021) Magnetic nanoparticles in biology and medicine: past, present, and future trends. Pharmaceutics 13(7):943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Thomas JA, Schnell F, Kaveh-Baghbaderani Y, Berensmeier S, Schwaminger SP (2020) Immunomagnetic separation of microorganisms with iron oxide nanoparticles. Chemosensors 8(1):17

    Article  CAS  Google Scholar 

  214. Moghadam NH, Salehzadeh S, Rakhtshah J, Moghadam AH, Tanzadehpanah H, Saidijam M (2019) Preparation of a highly stable drug carrier by efficient immobilization of human serum albumin (HSA) on drug-loaded magnetic iron oxide nanoparticles. Int J Biol Macromol 125:931–940

    Article  Google Scholar 

  215. Zhou Y, Yan D, Yuan S, Chen Y, Fletcher EE, Shi H, Han B (2018) Selective binding, magnetic separation and purification of histidine-tagged protein using biopolymer magnetic core-shell nanoparticles. Protein Expr Purif 144:5–11

    Article  CAS  PubMed  Google Scholar 

  216. Mai T, Hilt JZ (2019) Functionalization of iron oxide nanoparticles with small molecules and the impact on reactive oxygen species generation for potential cancer therapy. Colloids Surf A Physicochem Eng Asp 576:9–14

    Article  CAS  Google Scholar 

  217. Thanh BT, Van Sau N, Ju H, Bashir MJK, Jun HK, Phan TB, Ngo QM, Tran NQ, Hai TH, Van PH (2019) Immobilization of protein a on monodisperse magnetic nanoparticles for biomedical applications. J Nanomater 2019:2182471

    Article  Google Scholar 

  218. Soleymani M, Akbari A, Mahdavinia GR (2019) Magnetic PVA/laponite RD hydrogel nanocomposites for adsorption of model protein BSA. Polym Bull 76(5):2321–2340

    Article  CAS  Google Scholar 

  219. Sabra SA, Sheweita SA, Haroun M, Ragab D, Eldemellawy MA, Xia Y, Goodale D, Allan AL, Elzoghby AO, Rohani S (2019) Magnetically guided self-assembled protein micelles for enhanced delivery of dasatinib to human triple-negative breast cancer cells. J Pharm Sci 108(5):1713–1725

    Article  CAS  PubMed  Google Scholar 

  220. Aisida SO, Akpa PA, Ahmad I, Zhao T-k, Maaza M, Ezema FI (2020) Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. Eur Polym J 122:109371

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Danquah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vedarethinam, V., Jeevanandam, J., Acquah, C., Danquah, M.K. (2023). Magnetic Nanoparticles for Protein Separation and Purification. In: Loughran, S.T., Milne, J.J. (eds) Protein Chromatography. Methods in Molecular Biology, vol 2699. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3362-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3362-5_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3361-8

  • Online ISBN: 978-1-0716-3362-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics