Skip to main content

Chromatographic Purification of Viral Vectors for Gene Therapy Applications

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2699))

  • 969 Accesses

Abstract

Chromatography has been a mainstay in the downstream processing and purification of biopharmaceutical medicines. Until now, this has largely involved the purification of protein products such as recombinant enzymes and monoclonal antibodies using large-scale column chromatography methods. The development of advanced therapeutic medicinal products (ATMP) is heralding in a new era of therapeutics for a range of indications. These new therapeutics use diverse substances ranging from live stem cell preparations to fragments of nucleic acid enclosed in a viral delivery system. With these new technologies come new challenges in their purification. In this chapter, the challenges faced in producing and purifying viral vectors capable of delivering life-altering gene therapy to the patient will be discussed. Current methods of chromatography capable of adaptation to meet these new challenges and advancements that may be needed to increase the purification capabilities for these new products will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. EMA. Advanced therapy medicinal products: overview. 15 Dec 2021. Available from: https://www.ema.europa.eu/en/human-regulatory/overview/advanced-therapy-medicinal-products-overview

  2. EMA (2021) Luxturna. Cited 15 Dec 2021. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/luxturna

  3. EMA (2020) First CAR-T cell medicine for mantle cell lymphoma. 16/10/2020. Cited 2021. Available from: https://www.ema.europa.eu/en/news/first-car-t-cell-medicine-mantle-cell-lymphoma

  4. Grimm D, Kleinschmidt JA (1999) Progress in adeno-associated virus type 2 vector production: promises and prospects for clinical use. Hum Gene Ther 10(15):2445–2450

    Article  CAS  PubMed  Google Scholar 

  5. Mietzsch M et al (2020) Characterization of AAV-specific affinity ligands: consequences for vector purification and development strategies. Mol Ther Methods Clin Dev 19:362–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berns KI (1990) Parvovirus replication. Microbiol Rev 54(3):316–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kotin RM, Linden RM, Berns KI (1992) Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J 11(13):5071–5078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kotin RM et al (1990) Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A 87(6):2211–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Duan D et al (1998) Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J Virol 72(11):8568–8577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xiao X, Li J, Samulski RJ (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72(3):2224–2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burova E, Ioffe E (2005) Chromatographic purification of recombinant adenoviral and adeno-associated viral vectors: methods and implications. Gene Ther 12(S1):S5–S17

    Article  CAS  PubMed  Google Scholar 

  12. Green M et al (1967) Adenovirus DNA. I. Molecular weight and conformation. Proc Natl Acad Sci U S A 57(5):1302–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anguela XM, High KA (2019) Entering the modern era of gene therapy. Annu Rev Med 70(1):273–288

    Article  CAS  PubMed  Google Scholar 

  14. Bryson PD, Wang P (2014) Chapter 24 – lentivector vaccines. In: Lattime EC, Gerson SL (eds) Gene therapy of cancer, 3rd edn. Academic Press, San Diego, pp 345–361

    Chapter  Google Scholar 

  15. Naldini L et al (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci 93(21):11382–11388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Naldini L et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267

    Article  CAS  PubMed  Google Scholar 

  17. Schambach A, Baum C (2008) Clinical application of lentiviral vectors – concepts and practice. Curr Gene Ther 8(6):474–482

    Article  CAS  PubMed  Google Scholar 

  18. Tiscornia G, Singer O, Verma IM (2006) Production and purification of lentiviral vectors. Nat Protoc 1(1):241–245

    Article  CAS  PubMed  Google Scholar 

  19. Higashikawa F, Chang L (2001) Kinetic analyses of stability of simple and complex retroviral vectors. Virology 280(1):124–131

    Article  CAS  PubMed  Google Scholar 

  20. Coroadinha AS et al (2006) Effect of medium sugar source on the production of retroviral vectors for gene therapy. Biotechnol Bioeng 94(1):24–36

    Article  CAS  PubMed  Google Scholar 

  21. Coroadinha AS et al (2006) Effect of osmotic pressure on the production of retroviral vectors: enhancement in vector stability. Biotechnol Bioeng 94(2):322–329

    Article  CAS  PubMed  Google Scholar 

  22. Beer C et al (2003) The temperature stability of mouse retroviruses depends on the cholesterol levels of viral lipid shell and cellular plasma membrane. Virology 308(1):137–146

    Article  CAS  PubMed  Google Scholar 

  23. Carmo M et al (2008) From retroviral vector production to gene transfer: spontaneous inactivation is caused by loss of reverse transcription capacity. J Gene Med 10(4):383–391

    Article  CAS  PubMed  Google Scholar 

  24. Potter M et al (2002) Streamlined large-scale production of recombinant adeno-associated virus (rAAV) vectors. In: Phillips MI (ed) Methods in enzymology. Academic Press, San Diego, pp 413–430

    Google Scholar 

  25. Zolotukhin S et al (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 6(6):973–985

    Article  CAS  PubMed  Google Scholar 

  26. Zolotukhin S et al (2002) Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 28(2):158–167

    Article  CAS  PubMed  Google Scholar 

  27. Peng HH et al (2006) A rapid and efficient method for purification of recombinant adenovirus with arginine–glycine–aspartic acid-modified fibers. Anal Biochem 354(1):140–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wright JF (2008) Manufacturing and characterizing AAV-based vectors for use in clinical studies. Gene Ther 15(11):840–848

    Article  CAS  PubMed  Google Scholar 

  29. Auricchio A et al (2001) Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column. Hum Gene Ther 12(1):71–76

    Article  CAS  PubMed  Google Scholar 

  30. Moreira AS et al (2021) Advances in lentivirus purification. Biotechnol J 16(1):2000019

    Article  CAS  Google Scholar 

  31. Fortuna AR et al (2018) Optimization of cell culture-derived influenza A virus particles purification using sulfated cellulose membrane adsorbers. Eng Life Sci 18(1):29–39

    Article  CAS  PubMed  Google Scholar 

  32. Pillay TS, Muyldermans S (2021) Application of single-domain antibodies (“nanobodies”) to laboratory diagnosis. Ann Lab Med 41(6):549–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Penaud-Budloo M et al (2018) Pharmacology of recombinant adeno-associated virus production. Mol Ther Methods Clin Dev 8:166–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huyghe BG et al (1995) Purification of a type 5 recombinant adenovirus encoding human p53 by column chromatography. Hum Gene Ther 6(11):1403–1416

    Article  CAS  PubMed  Google Scholar 

  35. Blanche F et al (2000) An improved anion-exchange HPLC method for the detection and purification of adenoviral particles. Gene Ther 7(12):1055–1062

    Article  CAS  PubMed  Google Scholar 

  36. Stewart PL, Burnett RM (1995) Adenovirus structure by X-ray crystallography and electron microscopy. In: Doerfler W, Böhm P (eds) The molecular repertoire of adenoviruses I: virion structure and infection. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 25–38

    Chapter  Google Scholar 

  37. Schweizer M, Merten OW (2010) Large-scale production means for the manufacturing of lentiviral vectors. Curr Gene Ther 10(6):474–486

    Article  CAS  PubMed  Google Scholar 

  38. Rodrigues T et al (2006) Screening anion-exchange chromatographic matrices for isolation of onco-retroviral vectors. J Chromatogr B 837(1):59–68

    Article  CAS  Google Scholar 

  39. Merten OW et al (2011) Large-scale manufacture and characterization of a lentiviral vector produced for clinical ex vivo gene therapy application. Hum Gene Ther 22(3):343–356

    Article  CAS  PubMed  Google Scholar 

  40. Qu G et al (2007) Separation of adeno-associated virus type 2 empty particles from genome containing vectors by anion-exchange column chromatography. J Virol Methods 140(1):183–192

    Article  CAS  PubMed  Google Scholar 

  41. Smith RH, Ding C, Kotin RM (2003) Serum-free production and column purification of adeno-associated virus type 5. J Virol Methods 114(2):115–124

    Article  CAS  PubMed  Google Scholar 

  42. Gagnon P (2010) Monoliths open the door to key growth sectors. BioProcess Int 8(10):20–23

    Google Scholar 

  43. Barut M et al (2005) Convective interaction media short monolithic columns: enabling chromatographic supports for the separation and purification of large biomolecules. J Sep Sci 28(15):1876–1892

    Article  CAS  PubMed  Google Scholar 

  44. Jungbauer A, Hahn R (2008) Polymethacrylate monoliths for preparative and industrial separation of biomolecular assemblies. J Chromatogr A 1184(1):62–79

    Article  CAS  PubMed  Google Scholar 

  45. Ramos-de-la-Peña AM, González-Valdez J, Aguilar O (2019) Protein A chromatography: challenges and progress in the purification of monoclonal antibodies. J Sep Sci 42(9):1816–1827

    Article  PubMed  Google Scholar 

  46. Charcosset C (2012) 5 – Membrane chromatography. In: Charcosset C (ed) Membrane processes in biotechnology and pharmaceutics. Elsevier, Amsterdam, pp 169–212

    Chapter  Google Scholar 

  47. Challener CA (2021) Single-use technologies prove effective for viral vector process development. Cited 2021. Available from: http://www.processdevelopmentforum.com/articles/single-use-technologies-prove-effective-for-viral-vector-process-development/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kearney, A.M. (2023). Chromatographic Purification of Viral Vectors for Gene Therapy Applications. In: Loughran, S.T., Milne, J.J. (eds) Protein Chromatography. Methods in Molecular Biology, vol 2699. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3362-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3362-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3361-8

  • Online ISBN: 978-1-0716-3362-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics