Skip to main content

Mixed-Mode Chromatography and Its Role in Monoclonal Antibody Purification

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2699))

  • 983 Accesses

Abstract

As the biopharmaceutical industry matures and embraces process intensification methodologies allied to the emergence of newer personalized medicines, a key constant is the regulatory need to purify products that satisfy the criteria of safety, quality, and efficacy in each batch of released product destined for clinical use. Downstream processing operations and in particular chromatographic separations continue to play a key role in manufacturing strategies with the industry being well served by commercially available resins that provide different options to purify a particular target molecule of interest. In recent years, mixed-mode chromatography, a technique based on multimode interactions between ligands and proteins, had attracted much attention. This short review will discuss the concept and benefit of mixed-mode chromatography in purification strategies and specifically look at its application in the purification of IgG subtype monoclonal antibodies, a key product class in today’s industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walsh G (2014) Biopharmaceutical benchmarks. Nat Biotechnol 32:992–1000

    Article  CAS  PubMed  Google Scholar 

  2. Yang O, Prabhu S, Ierapetritou M (2019) Comparison between batch and continuous monoclonal antibody production and economic analysis. Ind Eng Chem Res 58(15):5851–5863

    Article  CAS  Google Scholar 

  3. Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30:1158–1170

    Article  CAS  PubMed  Google Scholar 

  4. McAtee AG, Templeton N, Young JD (2014) Role of Chinese hamster ovary central carbon metabolism in controlling the quality of secreted biotherapeutic proteins. Pharm Bioprocess 2:63–74

    Article  Google Scholar 

  5. Rouiller Y, Perilleux A, Vesin MN, Stettler M, Jordan M, Broly H (2014) Modulation of mAb quality attributes using microliter scale fed-batch cultures. Biotechnol Prog 30:571–583

    Article  CAS  PubMed  Google Scholar 

  6. Ling WL (2015) Development of protein-free medium for therapeutic protein production in mammalian cells: recent advances and perspectives. Pharm Bioprocess 3:215–226

    Article  CAS  Google Scholar 

  7. Chen C, Wong HE, Goudar T (2018) Upstream process intensification and continuous manufacturing. Curr Opin Chem Eng 22:191–198

    Article  Google Scholar 

  8. Strube J, Ditz R, Kornecki M, Huter A, Schmidt H, Thiess S, Zobel-Roos S (2018) Process intensification in biologics manufacturing. Chem Eng Process: Process Intensif 133:278–293

    Article  CAS  Google Scholar 

  9. Gerstweiler L, Bi J, Middelberg APJ (2021) Continuous downstream bioprocessing for intensified manufacture of biopharmaceuticals and antibodies. Chem Eng Sci 231:116272

    Article  CAS  Google Scholar 

  10. Zydney AL (2016) Continuous downstream processing for high value biological products: a review. Biotechnol Bioeng 113:465–475

    Article  CAS  PubMed  Google Scholar 

  11. Khanal O, Lenhoff AM (2021) Developments and opportunities in continuous biopharmaceutical manufacturing. MAbs 13(1):1903664

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fisher AC, Kamga M-H, Agarabi C, Brorson K, Lee SL, Yoon S (2019) The current scientific and regulatory landscape in advancing integrated continuous biopharmaceutical manufacturing. Trends Biotechnol 37:253–267

    Article  CAS  PubMed  Google Scholar 

  13. Strickley RG, Lambert WL (2021) A review of formulations of commercially available antibodies. J Pharm Sci 110:2590–2698

    Article  CAS  PubMed  Google Scholar 

  14. Danielsson Å (2018) Affinity chromatography. In: Jagschies G, Lindskog E, Lacki K, Galliher P (eds) Biopharmaceutical processing: development, design and implementation of manufacturing processes. Elsevier, Amsterdam, pp 367–378

    Chapter  Google Scholar 

  15. Grönberg A (2018) Ion exchange chromatography. In: Jagschies G, Lindskog E, Lacki K, Galliher P (eds) Biopharmaceutical processing: development, design and implementation of manufacturing processes. Elsevier, Amsterdam, pp 379–399

    Chapter  Google Scholar 

  16. Eriksson KO (2018) Hydrophobic interaction chromatography. In: Jagschies G, Lindskog E, Lacki K, Galliher P (eds) Biopharmaceutical processing: development, design and implementation of manufacturing processes. Elsevier, Amsterdam, pp 401–407

    Chapter  Google Scholar 

  17. Bolton G, Mehta K (2016) The role of more than 40 years of improvement in protein A chromatography in the growth of the therapeutic antibody industry. Biotechnol Prog 32:1193–1202

    Article  CAS  PubMed  Google Scholar 

  18. Geng XD, Ke CY, Chen G, Liu P, Wang F, Zhang HQ, Sun X (2009) On-line separation of native proteins by two-dimensional liquid chromatography using a single column. J Chromatogr A 1216:3553–3562

    Article  CAS  PubMed  Google Scholar 

  19. Yang Y, Geng X (2011) Mixed-mode chromatography and its applications to biopolymers. J Chromatogr A 1218:8813–8825

    Article  CAS  PubMed  Google Scholar 

  20. Zhang K, Liu X (2016) Mixed-mode chromatography in pharmaceutical and biopharmaceutical applications. J Pharm Biomed Anal 128:73–88

    Article  CAS  PubMed  Google Scholar 

  21. Kaleas KA, Tripodi M, Revelli S, Sharma V, Pizarro SA (2014) Evaluation of a multimodal resin for selective capture of CHO-derived monoclonal antibodies directly from harvested cell culture fluid. J Chromatogr B 969:256–263

    Article  CAS  Google Scholar 

  22. Zhang Y, Lingli C, Wang Y, Li Y (2019) Processing of high-salt-containing protein A eluate using mixed-mode chromatography in purifying an aggregation-prone antibody. Protein Expr Purif 164:105458

    Article  CAS  PubMed  Google Scholar 

  23. Brekkan E (2018) Multimodal chromatography. In: Jagschies G, Lindskog E, Lacki K, Galliher P (eds) Biopharmaceutical processing: development, design and implementation of manufacturing processes. Elsevier, Amsterdam, pp 409–419

    Chapter  Google Scholar 

  24. Rassi ZE, Horvath C (1986) Tandem columns and mixed-bed columns in high-performance liquid chromatography of proteins. J Chromatogr A 359:255–264

    Article  Google Scholar 

  25. Wolters DA, Washburn MP, Yates JR (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690

    Article  CAS  PubMed  Google Scholar 

  26. Walshe M, Kelly MT, Smyth MR, Ritchie H (1995) Retention studies on mixed-mode columns in high-performance liquid chromatography. J Chromatogr A 708:31–40

    Article  CAS  Google Scholar 

  27. Zhao G, Dong XY, Sun Y (2009) Ligands for mixed-mode protein chromatography: principles, characteristics and design. J Biotechnol 144:3–11

    Article  CAS  PubMed  Google Scholar 

  28. Brenac Brochier V, Chabre H, Lautrette A, Ravault M-N, Couret A, Didierlaurent P, Moingeon P (2009) High throughput screening of mixed-mode sorbents and optimisation using pre-packed lab-scale columns for the purification of the recombinant allergan rBet v 1a. J Chromatogr B 877:2420–2427

    Article  CAS  Google Scholar 

  29. Hjelm H, Hjelm K, Sjöquist J (1972) Protein A from Staphylococcus aureus. Its isolation by affinity chromatography and its use as an immunosorbent for isolation of immunoglobulins. FEBS Lett 28:73–76

    Article  CAS  PubMed  Google Scholar 

  30. Shukla AA, Hubbard B, Tressel T, Guhan S, Low D (2007) Downstream processing of monoclonal antibodies-application of platform approaches. J Chromatogr B 848:28–39

    Article  CAS  Google Scholar 

  31. Arakawa T, Kita Y, Sato H, Ejima D (2009) MEP chromatography of antibody and Fc-fusion protein using aqueous arginine solution. Protein Expr Purif 63:158–163

    Article  CAS  PubMed  Google Scholar 

  32. Cytiva Application Note 28-9078-92: two-step purification of monoclonal IgG1 from CHO cell culture supernatant. Available from https://www.cytivalifesciences.com

  33. Cytiva Application Note 28-9078-89: optimisation of loading conditions on Capto™ adhere using design of experiments. Available from https://www.cytivalifesciences.com

  34. Cytiva Application Note 29-0373-49 AA: polishing of monoclonal antibodies using Capto™ MMC ImpReS in bind and elute mode. Available from https://www.cytivalifesciences.com

  35. Cytiva Application Note 29-0373-49 AA: polishing of monoclonal antibodies using Capto™ adhere ImpReS in bind and elute mode. Available from https://www.cytivalifesciences.com

  36. Sartorius Product Data Sheet: HEA and PPA HyperCel resins. Mixed-mode Chromatography for Protein Separation Available from https://www.sartorius.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Joseph Milne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Milne, J.J. (2023). Mixed-Mode Chromatography and Its Role in Monoclonal Antibody Purification. In: Loughran, S.T., Milne, J.J. (eds) Protein Chromatography. Methods in Molecular Biology, vol 2699. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3362-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3362-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3361-8

  • Online ISBN: 978-1-0716-3362-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics