Skip to main content

Quantifying Cell Death Induced by the NLRC4 Inflammasome

  • Protocol
  • First Online:
NLR Proteins

Abstract

The Nod-like Receptor (NLR) apoptosis inhibitory proteins (NAIPs) are cytosolic receptors that sense cytosolic bacterial proteins. NAIP ligation induces its association with NLRC4, leading to the assembly of the NAIP/NLRC4 inflammasome, which induces the activation of the caspase-1 protease. Caspase-1 then cleaves pro-interleukin (IL)-1β, pro-IL-18, and gasdermin D and induces a form of pro-inflammatory cell death, pyroptosis. These processes culminate in host defense against bacterial infection. Here we describe methods for activating NAIP/NLRC4 inflammasome signalling in human and murine macrophages and quantifying inflammasome-induced cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    Article  CAS  PubMed  Google Scholar 

  2. Boucher D, Monteleone M, Coll RC et al (2018) Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J Exp Med 215:827–840. https://doi.org/10.1084/jem.20172222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chan AH, Schroder K (2020) Inflammasome signaling and regulation of interleukin-1 family cytokines. J Exp Med 217:e20190314. https://doi.org/10.1084/jem.20190314

    Article  CAS  PubMed  Google Scholar 

  4. Rauch I, Tenthorey JL, Nichols RD et al (2016) NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo. J Exp Med 213:657–665. https://doi.org/10.1084/jem.20151809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao Y, Yang J, Shi J et al (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–600. https://doi.org/10.1038/nature10510

    Article  CAS  PubMed  Google Scholar 

  6. Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477:592–595. https://doi.org/10.1038/nature10394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang J, Zhao Y, Shi J, Shao F (2013) Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci 110:14408–14413. https://doi.org/10.1073/pnas.1306376110

    Article  PubMed  PubMed Central  Google Scholar 

  8. von Moltke J, Trinidad NJ, Moayeri M et al (2012) Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490:107–111. https://doi.org/10.1038/nature11351

    Article  CAS  Google Scholar 

  9. Kuida K, Lippke JA, Ku G et al (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267:2000–2003. https://doi.org/10.1126/science.7535475

    Article  CAS  PubMed  Google Scholar 

  10. Chen KW, Monteleone M, Boucher D et al (2018) Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol 3. https://doi.org/10.1126/sciimmunol.aar6676

  11. Linton SD (2005) Caspase inhibitors: a pharmaceutical industry perspective. Curr Top Med Chem 5:1697–1717. https://doi.org/10.2174/156802605775009720

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was supported by the Australian Research Council (Discovery Project DP190102285 and DP200100646 to KS; Discovery Early Career Researcher Fellowships DE220100823 and DE200101300 to SE and MMM) and the National Health and Medical Research Council of Australia (Project grant 1163924 and Fellowship 1141131 to KS).

KS is a co-inventor on patent applications for NLRP3 inhibitors which have been licensed to Inflazome Ltd., a company headquartered in Dublin, Ireland. Inflazome is developing drugs that target the NLRP3 inflammasome to address unmet clinical needs in inflammatory disease. KS served on the Scientific Advisory Board of Inflazome in 2016–2017 and serves as a consultant to Quench Bio, USA, and Novartis, Switzerland. At the time this protocol was developed, HK, AS, JA, MAN, WL, and IK were employees of Quench Bio, a company focused on therapeutically targeting GSDMD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate Schroder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Emming, S. et al. (2023). Quantifying Cell Death Induced by the NLRC4 Inflammasome. In: Pelegrín, P., Di Virgilio, F. (eds) NLR Proteins. Methods in Molecular Biology, vol 2696. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3350-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3350-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3349-6

  • Online ISBN: 978-1-0716-3350-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics