Skip to main content

The Value of Cell-Free Circulating DNA Profiling in Patients with Skin Diseases

  • Protocol
  • First Online:
Liquid Biopsies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2695))

  • 707 Accesses

Abstract

Liquid biopsy, also known as fluid biopsy or fluid-phase biopsy, is the sampling and analysis of the blood, cerebrospinal fluid, saliva, pleural fluid, ascites, and urine. Compared with tissue biopsy, liquid biopsy technology has the advantages of being noninvasive, having strong repeatability, enabling early diagnosis, dynamic monitoring, and overcoming tumor heterogeneity. However, interest in cfDNA and skin diseases has not expanded until recently. In this review, we present an overview of the literature related to the basic biology of cfDNA in the field of dermatology as a biomarker for early diagnosis, monitoring disease activity, predicting progression, and treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alix-Panabières C, Pantel K (2021) Liquid biopsy: from discovery to clinical application [J]. Cancer Discov 11(4):858–873

    Article  PubMed  Google Scholar 

  2. Shohdy KS, West HJ (2020) Circulating tumor DNA testing—liquid biopsy of a cancer [J]. JAMA Oncol 6(5):792–792

    Article  PubMed  Google Scholar 

  3. Page K, Shaw JA, Guttery DS (2019) The liquid biopsy: towards standardisation in preparation for prime time [J]. Lancet Oncology 20(6):758–760

    Article  PubMed  Google Scholar 

  4. Alix-Panabieres C (2020) The future of liquid biopsy [J]. Nature 579(7800):S9–S9

    Article  CAS  PubMed  Google Scholar 

  5. Allyse MA, Wick MJ (2018) Noninvasive prenatal genetic screening using cell-free DNA [J]. JAMA 320(6):591–592

    Article  PubMed  Google Scholar 

  6. Ravaioli S (2019) Cell-free DNA integrity: applications [M]//cell-free DNA as diagnostic markers. Humana Press, New York, pp 77–83

    Book  Google Scholar 

  7. Zukowski A, Rao S, Ramachandran S (2020) Phenotypes from cell-free DNA [J]. Open Biol 10(9):200119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liebs S, Eder T, Klauschen F et al (2021) Applicability of liquid biopsies to represent the mutational profile of tumor tissue from different cancer entities [J]. Oncogene 40(33):5204–5212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Papadopoulos N (2020) Pathophysiology of ctDNA release into the circulation and its characteristics: what is important for clinical applications [J]. Tumor Liquid Biopsies 215:163–180

    Article  CAS  Google Scholar 

  10. MANDEL P, METAIS P (1948) Nuclear acids in human blood plasma. C R Seances Soc Biol Fil 142(3–4):241–243

    CAS  PubMed  Google Scholar 

  11. Pinzani P, Salvianti F, Orlando C et al (2014) Circulating cell-free DNA in cancer [M]//quantitative real-time PCR. Humana Press, New York, pp 133–145

    Google Scholar 

  12. Han D, Li R, Shi J et al (2020) Liquid biopsy for infectious diseases: a focus on microbial cell-free DNA sequencing [J]. Theranostics 10(12):5501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mondelo-Macía P, Castro-Santos P, Castillo-García A et al (2021) Circulating free DNA and its emerging role in autoimmune diseases [J]. J Pers Med 11(2):151

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ponti G, Maccaferri M, Manfredini M et al (2018) The value of fluorimetry (qubit) and spectrophotometry (NanoDrop) in the quantification of cell-free DNA (cfDNA) in malignant melanoma and prostate cancer patients [J]. Clin Chim Acta 479:14–19

    Article  CAS  PubMed  Google Scholar 

  15. Váraljai R, Elouali S, Lueong SS et al (2021) The predictive and prognostic significance of cell-free DNA concentration in melanoma [J]. J Eur Acad Dermatol Venereol 35(2):387–395

    Article  PubMed  Google Scholar 

  16. Cirillo M, Craig AFM, Borchmann S et al (2020) Liquid biopsy in lymphoma: molecular methods and clinical applications [J]. Cancer Treat Rev 91:102106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wan PTC, Garnett MJ, Roe SM et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF [J]. Cell 116(6):855–867

    Article  CAS  PubMed  Google Scholar 

  18. Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer [J]. Nature 417(6892):949–954

    Article  CAS  PubMed  Google Scholar 

  19. Wilmott JS, Menzies AM, Haydu LE et al (2013) BRAFV600E protein expression and outcome from BRAF inhibitor treatment in BRAFV600E metastatic melanoma [J]. Br J Cancer 108(4):924–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aung KL, Donald E, Ellison G et al (2014) Analytical validation of BRAF mutation testing from circulating free DNA using the amplification refractory mutation testing system [J]. J Mol Diagn 16(3):343–349

    Article  CAS  PubMed  Google Scholar 

  21. Santiago-Walker A, Gagnon R, Mazumdar J et al (2016) Correlation of BRAF mutation status in circulating-free DNA and tumor and association with clinical outcome across four BRAFi and MEKi clinical TrialsPrognostic value of BRAF mutation detection in circulation [J]. Clin Cancer Res 22(3):567–574

    Article  CAS  PubMed  Google Scholar 

  22. Tzanikou E, Haselmann V, Markou A et al (2020) Direct comparison study between droplet digital PCR and a combination of allele-specific PCR, asymmetric rapid PCR and melting curve analysis for the detection of BRAF V600E mutation in plasma from melanoma patients [J]. Clin Chem Lab Med 58(11):1799–1807

    Article  CAS  PubMed  Google Scholar 

  23. Pinzani P, Salvianti F, Zaccara S et al (2011) Circulating cell-free DNA in plasma of melanoma patients: qualitative and quantitative considerations [J]. Clin Chim Acta 412(23–24):2141–2145

    Article  CAS  PubMed  Google Scholar 

  24. Gangadhar TC, Savitch SL, Yee SS et al (2018) Feasibility of monitoring advanced melanoma patients using cell-free DNA from plasma [J]. Pigment Cell Melanoma Res 31(1):73–81

    Article  CAS  PubMed  Google Scholar 

  25. Kaneko A, Kanemaru H, Kajihara I et al (2021) Liquid biopsy-based analysis by ddPCR and CAPP-Seq in melanoma patients [J]. J Dermatol Sci 102(3):158–166

    Article  CAS  PubMed  Google Scholar 

  26. Olbryt M, Rajczykowski M, Bal W et al (2021) NGS analysis of liquid biopsy (LB) and formalin-fixed paraffin-embedded (FFPE) melanoma samples using Oncomine™ Pan-cancer cell-free assay [J]. Genes 12(7):1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salvianti F, Orlando C, Massi D et al (2016) Tumor-related methylated cell-free DNA and circulating tumor cells in melanoma [J]. Front Mol Biosci 2:76

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu L, Toung JM, Jassowicz AF et al (2018) Targeted methylation sequencing of plasma cell-free DNA for cancer detection and classification [J]. Ann Oncol 29(6):1445–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Salvianti F, Pinzani P, Verderio P et al (2012) Multiparametric analysis of cell-free DNA in melanoma patients [J]. PLoS One 7(11):e49843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Metz CHD, Scheulen M, Bornfeld N et al (2013) Ultradeep sequencing detects GNAQ and GNA11 mutations in cell-free DNA from plasma of patients with uveal melanoma [J]. Cancer Med 2(2):208–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bustamante P, Tsering T, Coblentz J et al (2021) Circulating tumor DNA tracking through driver mutations as a liquid biopsy-based biomarker for uveal melanoma [J]. J Exp Clin Cancer Res 40(1):1–16

    Article  Google Scholar 

  32. Melms JC, Ho KW, Thummalapalli R et al (2018) Implementation of cell-free tumor DNA sequencing from the cerebrospinal fluid to guide treatment in a patient with primary leptomeningeal melanoma: a case report [J]. Mol Clin Oncol 9(1):58–61

    PubMed  PubMed Central  Google Scholar 

  33. Momtaz P, Pentsova E, Abdel-Wahab O et al (2016) Quantification of tumor-derived cell free DNA (cfDNA) by digital PCR (DigPCR) in cerebrospinal fluid of patients with BRAFV600 mutated malignancies [J]. Oncotarget 7(51):85430

    Article  PubMed  PubMed Central  Google Scholar 

  34. Parietti M, Marra E, Ribero S et al (2022) Leptomeningeal dissemination as a first sign of progression in metastatic melanoma: a diagnostic lesson [J]. Melanoma Res 32(1):55–58

    Article  CAS  PubMed  Google Scholar 

  35. Cheok SK, Narayan A, Arnal-Estape A et al (2021) Tumor DNA mutations from intraparenchymal brain metastases are detectable in CSF [J]. JCO Precis Oncol 5:163–172

    Article  Google Scholar 

  36. Perrone ME, Alvarez R, Vo TT et al (2021) Validating cell-free DNA from supernatant for molecular diagnostics on cytology specimens [J]. Cancer Cytopathol 129(12):956–965

    Article  CAS  PubMed  Google Scholar 

  37. Villatoro S, Mayo-de-las-Casas C, Jordana-Ariza N et al (2019) Prospective detection of mutations in cerebrospinal fluid, pleural effusion, and ascites of advanced cancer patients to guide treatment decisions [J]. Mol Oncol 13(12):2633–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Valpione S, Gremel G, Mundra P et al (2018) Plasma total cell-free DNA (cfDNA) is a surrogate biomarker for tumour burden and a prognostic biomarker for survival in metastatic melanoma patients [J]. Eur J Cancer 88:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mikoshiba A, Ashida A, Sakaizawa K et al (2020) Detecting copy number alterations of oncogenes in cell-free DNA to monitor treatment response in acral and mucosal melanoma [J]. J Dermatol Sci 97(3):172–178

    Article  CAS  PubMed  Google Scholar 

  40. Silva S, Danson S, Teare D et al (2018) Genome-wide analysis of circulating cell-free DNA copy number detects active melanoma and predicts survival [J]. Clin Chem 64(9):1338–1346

    Article  CAS  PubMed  Google Scholar 

  41. Slostad JA, Liu MC, Allred JB et al (2021) BRAF V600 mutation detection in plasma cell-free DNA: NCCTG N0879 (Alliance)[J]. Mayo Clin Proc 5(6):1012–1020

    Google Scholar 

  42. Lin SY, Huang SK, Huynh KT et al (2018) Multiplex gene profiling of cell-free DNA in patients with metastatic melanoma for monitoring disease [J]. JCO Precis Oncol 2:1–30

    CAS  PubMed  Google Scholar 

  43. Gonzalez-Cao M (2018) Mayo de las Casas C, Jordana Ariza N, et al. early evolution of BRAFV600 status in the blood of melanoma patients correlates with clinical outcome and identifies patients refractory to therapy [J]. Melanoma Res 28(3):195–203

    Article  CAS  PubMed  Google Scholar 

  44. Board RE, Ellison G, Orr MCM et al (2009) Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phase II study [J]. Br J Cancer 101(10):1724–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Burjanivova T, Malicherova B, Grendar M et al (2019) Detection of BRAFV600E mutation in melanoma patients by digital PCR of circulating DNA [J]. Genet Test Mol Biomarkers 23(4):241–245

    Article  CAS  PubMed  Google Scholar 

  46. Ashida A, Sakaizawa K, Uhara H, et al (2017) Circulating tumour DNA for monitoring treatment response to anti-PD-1 immunotherapy in melanoma patients [D]. Shinshu University Library

    Google Scholar 

  47. Gremel G, Lee RJ, Girotti MR et al (2016) Distinct subclonal tumour responses to therapy revealed by circulating cell-free DNA [J]. Ann Oncol 27(10):1959–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kozak K, Kowalik A, Gos A et al (2020) Cell-free DNA BRAF V600E measurements during BRAF inhibitor therapy of metastatic melanoma: long-term analysis [J]. Tumori J 106(3):241–248

    Article  CAS  Google Scholar 

  49. Palawisuth S, Manuskiatti W, Apinuntham C et al (2022) Quantitative assessment of the long-term efficacy and safety of a 1064-nm picosecond laser with fractionated microlens array in the treatment of enlarged pores in Asians: a case-control study [J]. Lasers Surg Med 54(3):348–354

    Article  PubMed  Google Scholar 

  50. Rutkowski P, Pauwels P, Kerger J et al (2021) Characterization and clinical utility of BRAF V600 mutation detection using cell-free DNA in patients with advanced melanoma [J]. Cancers 13(14):3591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ascierto PA, Minor D, Ribas A et al (2013) Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma [J]. J Clin Oncol 31(26):3205–3211

    Article  CAS  PubMed  Google Scholar 

  52. Li Y, Pan W, Connolly ID et al (2016) Tumor DNA in cerebral spinal fluid reflects clinical course in a patient with melanoma leptomeningeal brain metastases [J]. J Neuro-Oncol 128(1):93–100

    Article  CAS  Google Scholar 

  53. Hurkmans DP, Verhoeven JGHP, de Leur K et al (2019) Donor-derived cell-free DNA detects kidney transplant rejection during nivolumab treatment [J]. J Immunother Cancer 7(1):1–7

    Article  Google Scholar 

  54. Wu J, Tang W, Huang L et al (2019) The analysis of cell-free DNA concentrations and integrity in serum of initial and treated of lymphoma patients [J]. Clin Biochem 63:59–65

    Article  CAS  PubMed  Google Scholar 

  55. Lenaerts L, Vandenberghe P, Brison N et al (2019) Genomewide copy number alteration screening of circulating plasma DNA: potential for the detection of incipient tumors [J]. Ann Oncol 30(1):85–95

    Article  CAS  PubMed  Google Scholar 

  56. Hosny G, Farahat N, Hainaut P (2009) TP53 mutations in circulating free DNA from Egyptian patients with non-Hodgkin’s lymphoma [J]. Cancer Lett 275(2):234–239

    Article  CAS  PubMed  Google Scholar 

  57. Fu H, Zhou H, Qiu Y et al (2021) SEPT6_TRIM33 gene fusion and mutated TP53 pathway associate with unfavorable prognosis in patients with B-cell lymphomas [J]. Front Oncol 11:765544–765544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mussolin L, Burnelli R, Pillon M et al (2013) Plasma cell-free DNA in paediatric lymphomas [J]. J Cancer 4(4):323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Primerano S, Burnelli R, Carraro E et al (2016) Kinetics of circulating plasma cell-free dna in paediatric classical Hodgkin lymphoma [J]. J Cancer 7(4):364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bouzidi A, Labreche K, Baron M et al (2021) Low-coverage whole genome sequencing of cell-free DNA from immunosuppressed cancer patients enables tumor fraction determination and reveals relevant copy number alterations [J]. Front Cell Dev Biol 9:661272

    Google Scholar 

  61. Rivas-Delgado A, Nadeu F, Enjuanes A et al (2021) Mutational landscape and tumor burden assessed by cell-free DNA in diffuse large B-cell lymphoma in a population-based study [J]. Clin Cancer Res 27(2):513–521

    Article  CAS  PubMed  Google Scholar 

  62. Eskandari M, Manoochehrabadi S, Pashaiefar H et al (2019) Clinical significance of cell-free DNA as a prognostic biomarker in patients with diffuse large B-cell lymphoma [J]. Blood Res 54(2):114–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hur JY, Kim YJ, Yoon SE et al (2020) Plasma cell-free DNA is a prognostic biomarker for survival in patients with aggressive non-Hodgkin lymphomas [J]. Ann Hematol 99(6):1293–1302

    Article  CAS  PubMed  Google Scholar 

  64. Regazzo G, Marchesi F, Spagnuolo M et al (2021) Diffuse large B-cell lymphoma: time to focus on circulating blood nucleic acids? [J]. Blood Rev 47:100776

    Article  CAS  PubMed  Google Scholar 

  65. Fox-Fisher I, Piyanzin S, Ochana BL et al (2021) Remote immune processes revealed by immune-derived circulating cell-free DNA [J]. elife 10:e70520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chiu BCH, Zhang Z, You Q et al (2019) Prognostic implications of 5-hydroxymethylcytosines from circulating cell-free DNA in diffuse large B-cell lymphoma [J]. Blood Adv 3(19):2790–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen HY, Zhang WL, Zhang L et al (2021) 5-Hydroxymethylcytosine profiles of cfDNA are highly predictive of R-CHOP treatment response in diffuse large B cell lymphoma patients [J]. Clin Epigenetics 13(1):1–14

    Article  Google Scholar 

  68. Goodman AM, Holden KA, Jeong AR et al (2022) Assessing CAR T-Cell Therapy Response Using Genome-Wide Sequencing of Cell-Free DNA in Patients With B-Cell Lymphomas [J]. Transplant Cell Ther 28(1):30. e1–30. e7

    Article  CAS  PubMed  Google Scholar 

  69. Rossi D, Diop F, Spaccarotella E et al (2017) Diffuse large B-cell lymphoma genotyping on the liquid biopsy [J]. Blood 129(14):1947–1957

    Article  CAS  PubMed  Google Scholar 

  70. Mika T, Thomson J, Nilius-Eliliwi V et al (2021) Quantification of cell-free DNA for the analysis of CD19-CAR-T cells during lymphoma treatment [J]. Mol Ther Methods Clin Dev 23:539–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wedge E, Hansen JW, Garde C et al (2017) Global hypomethylation is an independent prognostic factor in diffuse large B cell lymphoma [J]. Am J Hematol 92(7):689–694

    Article  CAS  PubMed  Google Scholar 

  72. Camus V, Sarafan-Vasseur N, Bohers E et al (2016) Digital PCR for quantification of recurrent and potentially actionable somatic mutations in circulating free DNA from patients with diffuse large B-cell lymphoma [J]. Leuk Lymphoma 57(9):2171–2179

    Article  CAS  PubMed  Google Scholar 

  73. Camus V, Jardin F (2021) Cell-free DNA for the management of classical Hodgkin Lymphoma [J]. Pharmaceuticals 14(3):207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Buedts L, Wlodarska I, Finalet-Ferreiro J et al (2021) The landscape of copy number variations in classical Hodgkin lymphoma: a joint KU Leuven and LYSA study on cell-free DNA [J]. Blood Adv 5(7):1991–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tagawa M, Shimbo G, Inokuma H et al (2019) Quantification of plasma cell-free DNA levels in dogs with various tumors. J Vet Diagn Investig 31(6):836–843

    Article  CAS  Google Scholar 

  76. Kim J, Bae H, Ahn S et al (2021) Cell-free DNA as a diagnostic and prognostic biomarker in dogs with tumors [J]. Front Vet Sci 8:1041

    Article  Google Scholar 

  77. Chiu BCH, Chen C, You Q et al (2021) Alterations of 5-hydroxymethylation in circulating cell-free DNA reflect molecular distinctions of subtypes of non-Hodgkin lymphoma [J]. NPJ Genom Med 6(1):1–10

    Article  Google Scholar 

  78. Shimada K, Yoshida K, Suzuki Y et al (2021) Frequent genetic alterations in immune checkpoint–related genes in intravascular large B-cell lymphoma [J]. Blood 137(11):1491–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Decazes P, Camus V, Bohers E et al (2020) Correlations between baseline 18F-FDG PET tumour parameters and circulating DNA in diffuse large B cell lymphoma and Hodgkin lymphoma [J]. EJNMMI Res 10(1):1–10

    Article  Google Scholar 

  80. Ottolini B, Nawaz N, Trethewey CS et al (2020) Multiple mutations at exon 2 of RHOA detected in plasma from patients with peripheral T-cell lymphoma [J]. Blood Adv 4(11):2392–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Qi F, Cao Z, Chen B et al (2021) Liquid biopsy in extranodal NK/T-cell lymphoma: a prospective analysis of cell-free DNA genotyping and monitoring [J]. Blood Adv 5(11):2505–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sun P, Chen C, Xia Y et al (2019) Mutation profiling of malignant lymphoma by next-generation sequencing of circulating cell-free DNA [J]. J Cancer 10(2):323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Suehara Y, Sakata-Yanagimoto M, Hattori K et al (2019) Mutations found in cell-free DNA s of patients with malignant lymphoma at remission can derive from clonal hematopoiesis [J]. Cancer Sci 110(10):3375–3381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Camus V, Jardin F (2019) Cell-free DNA and the monitoring of lymphoma treatment [J]. Pharmacogenomics 20(18):1271–1282

    Article  CAS  PubMed  Google Scholar 

  85. Smith RA, Lam AK (2020) Liquid biopsy for investigation of cancer DNA in esophageal squamous cell carcinoma [M]//esophageal squamous cell carcinoma. Humana, New York, NY, pp 203–215

    Book  Google Scholar 

  86. Kumari P, Syed SA, Wahid M et al (2021) Expression of miR-31 in saliva-liquid biopsy in patients with oral squamous cell carcinoma [J]. J Taibah Univ Med Sci 16(5):733

    PubMed  PubMed Central  Google Scholar 

  87. Galot R, van Marcke C, Helaers R et al (2020) Liquid biopsy for mutational profiling of locoregional recurrent and/or metastatic head and neck squamous cell carcinoma [J]. Oral Oncol 104:104631

    Article  CAS  PubMed  Google Scholar 

  88. Ng SP, Hall CS, Meas S et al (2020) Circulating tumour cell and cell-free DNA kinetics during radiotherapy in patients with intact head and neck squamous cell carcinoma [J]. medRxiv https://doi.org/10.1101/2020.10.13.20211516

  89. Mijiddorj T, Kajihara I, Tasaki Y et al (2019) Serum cell-free DNA levels are a useful marker for extramammary Paget disease [J]. Br J Dermatol 181(3):505–511

    Article  CAS  PubMed  Google Scholar 

  90. Sawamura S, Mijiddorj Myangat T, Kajihara I et al (2022) Genomic landscape of circulating tumour DNA in metastatic extramammary Paget’s disease [J]. Exp Dermatol 31(3):341–348

    Article  CAS  PubMed  Google Scholar 

  91. Hughes JH, Stoll DB (1978) Kaposi sarcoma. Am Fam Physician 17(4):181–182

    CAS  PubMed  Google Scholar 

  92. Cesarman E, Damania B, Krown SE et al (2019) Kaposi sarcoma. Nat Rev Dis Primers 5(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shamay M, Hand N, Lemas MV et al (2012) CpG methylation as a tool to characterize cell-free Kaposi sarcoma herpesvirus DNA [J]. J Infect Dis 205(7):1095–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stern RS (1997) Psoriasis. Lancet 350(9074):349–353

    Article  CAS  PubMed  Google Scholar 

  95. Perera GK, Di Meglio P, Nestle FO (2012) Psoriasis. Annu Rev Pathol 7:385–422

    Article  CAS  PubMed  Google Scholar 

  96. Beranek M, Fiala Z, Kremlacek J et al (2017) Changes in circulating cell-free DNA and nucleosomes in patients with exacerbated psoriasis [J]. Arch Dermatol Res 309(10):815–821

    Article  CAS  PubMed  Google Scholar 

  97. Sakamoto R, Sawamura S, Kajihara I et al (2020) Circulating tumor necrosis factor-α DNA are elevated in psoriasis [J]. J Dermatol 47(9):1037–1040

    Article  CAS  PubMed  Google Scholar 

  98. Tan EM, Cohen AS, Fries JF et al (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus [J]. Arthritis Rheum 25(11):1271–1277

    Article  CAS  PubMed  Google Scholar 

  99. Zhang C, Chen J, Cai L et al (2018) DNA induction of MDM2 promotes proliferation of human renal mesangial cells and alters peripheral B cells subsets in pediatric systemic lupus erythematosus [J]. Mol Immunol 94:166–175

    Article  CAS  PubMed  Google Scholar 

  100. Jeremic I, Djuric O, Nikolic M et al (2019) Neutrophil extracellular traps-associated markers are elevated in patients with systemic lupus erythematosus [J]. Rheumatol Int 39(11):1849–1857

    Article  CAS  PubMed  Google Scholar 

  101. Tug S, Helmig S, Menke J et al (2014) Correlation between cell free DNA levels and medical evaluation of disease progression in systemic lupus erythematosus patients [J]. Cell Immunol 292(1–2):32–39

    Article  CAS  PubMed  Google Scholar 

  102. Bombardier C, Gladman DD, Urowitz MB et al (1992) Derivation of the SLEDAI. A disease activity index for lupus patients [J]. Arthritis Rheum 35(6):630–640

    Article  CAS  PubMed  Google Scholar 

  103. Xu Y, Song Y, Chang J et al (2018) High levels of circulating cell-free DNA are a biomarker of active SLE [J]. Eur J Clin Investig 48(11):e13015

    Article  Google Scholar 

  104. Moroni G, Depetri F, Ponticelli C (2016) Lupus nephritis: when and how often to biopsy and what does it mean? [J]. J Autoimmun 74:27–40

    Article  PubMed  Google Scholar 

  105. Truszewska A, Wirkowska A, Gala K et al (2020) Cell-free DNA profiling in patients with lupus nephritis [J]. Lupus 29(13):1759–1772

    Article  CAS  PubMed  Google Scholar 

  106. Zhang S, Lu X, Shu X et al (2014) Elevated plasma cfDNA may be associated with active lupus nephritis and partially attributed to abnormal regulation of neutrophil extracellular traps (NETs) in patients with systemic lupus erythematosus [J]. Intern Med 53(24):2763–2771

    Article  PubMed  Google Scholar 

  107. Hartl J, Serpas L, Wang Y et al (2021) Autoantibody-mediated impairment of DNASE1L3 activity in sporadic systemic lupus erythematosus [J]. J Exp Med 218(5):e20201138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Truszewska A, Wirkowska A, Gala K et al (2021) EBV load is associated with cfDNA fragmentation and renal damage in SLE patients [J]. Lupus 30(8):1214–1225

    Article  CAS  PubMed  Google Scholar 

  109. Han DSC, Lo YMD (2021) The nexus of cfDNA and nuclease biology [J]. Trends Genet 37(8):758–770

    Article  CAS  PubMed  Google Scholar 

  110. Huang J, Li Z, Cheng L et al (2021) Comparison of plasma levels and immunoactivities of different forms of circulating-free DNA in systemic lupus erythematosus patients [J]. Xi bao yu fen zi Mian yi xue za zhi = Chinese J Cell Mol Immunol 37(7):633–640

    Google Scholar 

  111. Thiers BH (1981) Pemphigus. J Am Acad Dermatol 4(5):603–605

    Article  CAS  PubMed  Google Scholar 

  112. Schmidt E, Kasperkiewicz M, Joly P (2019) Pemphigus Lancet 394(10201):882–894. https://doi.org/10.1016/S0140-6736(19)31778-7

    Article  CAS  PubMed  Google Scholar 

  113. Kakitsuka Y, Sawamura S, Kajihara I et al (2021) Serum levels of desmoglein-1 DNA copies in cell-free DNA of patients with pemphigus [J]. J Dermatol 48(1):e31–e32

    Article  CAS  PubMed  Google Scholar 

  114. Momtaz P, Harding JJ, Ariyan C et al (2017) Four-month course of adjuvant dabrafenib in patients with surgically resected stage IIIC melanoma characterized by a BRAFV600E/K mutation [J]. Oncotarget 8(62):105000

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zozaya-Valdés E, Wong SQ, Raleigh J et al (2021) Detection of cell-free microbial DNA using a contaminant-controlled analysis framework [J]. Genome Biol 22(1):1–22

    Article  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflicts of interest.

Author Contributions

MJW, FYB, and TY designed the literature. MJW and HYM drafted the manuscript. TXH and FYB proofread the manuscript. All authors discussed the results and commented on the manuscript. All authors contributed to the article and approved the submitted version.

Funding

This study was supported by the National Science Foundation of China(82073453), the Zhejiang Provincial Natural Science Foundation of China (LY20H110002), the General Project Funds from the Health Department of Zhejiang Province (2020KY446), and the outstanding Young People Fund in Zhejiang Provincial People’s Hospital (ZRY2018C004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibin Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ma, J., Teng, Y., Youming, H., Tao, X., Fan, Y. (2023). The Value of Cell-Free Circulating DNA Profiling in Patients with Skin Diseases. In: Huang, T., Yang, J., Tian, G. (eds) Liquid Biopsies. Methods in Molecular Biology, vol 2695. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3346-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3346-5_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3345-8

  • Online ISBN: 978-1-0716-3346-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics