Skip to main content

Monitoring of the Heat Shock Response with a Real-Time Luciferase Reporter

  • Protocol
  • First Online:
Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2693))

Abstract

The heat shock response (HSR) is a cellular mechanism for counteracting acute proteotoxic stress. In eukaryotes, transcriptional activation of the HSR is regulated by heat shock factor 1 (HSF1). Activation of HSF1 induces the expression of heat shock proteins (HSPs) that function as molecular chaperones to fold and maintain the three-dimensional structure of misfolded proteins. The regulation of the degree and duration of the HSR is controlled by multiple biochemical mechanisms that include posttranslational modification of HSF1 and numerous protein–protein interactions. In this chapter, we describe a method to evaluate the activation and deactivation of the HSR at the transcriptional level using a short half-life luciferase reporter assay. This assay can be used to further characterize the HSR or as a screen for small molecule inducers, amplifiers, or repressors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murshid A, Eguchi T, Calderwood SK (2013) Stress proteins in aging and life span. Int J Hyperth 29(5):442–447

    Article  CAS  Google Scholar 

  2. Prince TL, Lang BJ, Guerrero-Gimenez ME, Fernandez-Muñoz JM, Ackerman A, Calderwood SK (2020) HSF1: primary factor in molecular chaperone expression and a major contributor to cancer morbidity. Cell 9(4):1046

    Article  CAS  Google Scholar 

  3. Lang BJ, Guerrero ME, Prince TL, Okusha Y, Bonorino C, Calderwood SK (2021) The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Arch Toxicol 95(6):1943–1970

    Article  CAS  PubMed  Google Scholar 

  4. Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, Fraenkel E, Ince TA, Whitesell L, Lindquist S (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150(3):549–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schmauder L, Sima S, Hadj AB, Cesar R, Richter K (2022) Binding of the HSF-1 DNA-binding domain to multimeric C. elegans consensus HSEs is guided by cooperative interactions. Sci Rep 12(1):1–19

    Article  Google Scholar 

  6. Bunch H, Zheng X, Burkholder A, Dillon ST, Motola S, Birrane G, Ebmeier CC, Levine S, Fargo D, Hu G, Taatjes DJ (2014) TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release. Nat Struct Mol Biol 21(10):876–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vihervaara A, Mahat DB, Guertin MJ, Chu T, Danko CG, Lis JT, Sistonen L (2017) Transcriptional response to stress is pre-wired by promoter and enhancer architecture. Nat Commun 8(1):1–6

    Article  CAS  Google Scholar 

  8. Kijima T, Prince TL, Tigue ML, Yim KH, Schwartz H, Beebe K, Lee S, Budzynski MA, Williams H, Trepel JB, Sistonen L (2018) HSP90 inhibitors disrupt a transient HSP90-HSF1 interaction and identify a noncanonical model of HSP90-mediated HSF1 regulation. Sci Rep 8(1):1–3

    Article  Google Scholar 

  9. Kmiecik SW, Le Breton L, Mayer MP (2020) Feedback regulation of heat shock factor 1 (Hsf1) activity by Hsp70-mediated trimer unzipping and dissociation from DNA. EMBO J 39(14):e104096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pernet L, Faure V, Gilquin B, Dufour-Guérin S, Khochbin S, Vourc’h C (2014) HDAC6–ubiquitin interaction controls the duration of HSF1 activation after heat shock. Mol Biol Cell 25(25):4187–4194

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guettouche T, Boellmann F, Lane WS, Voellmy R (2005) Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem 6(1):1–4

    Article  Google Scholar 

  12. Neef DW, Jaeger AM, Gomez-Pastor R, Willmund F, Frydman J, Thiele DJ (2014) A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1. Cell Rep 9(3):955–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kmiecik SW, Mayer MP (2021) Molecular mechanisms of heat shock factor 1 regulation. Trends Biochem Sci 47(3):218–234

    Article  PubMed  Google Scholar 

  14. Kmiecik SW, Drzewicka K, Melchior F, Mayer MP (2021) Heat shock transcription factor 1 is SUMOylated in the activated trimeric state. J Biol Chem 296:100324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gomez-Pastor R, Burchfiel ET, Thiele DJ (2018) Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol 19(1):4–19

    Article  CAS  PubMed  Google Scholar 

  16. Cyran AM, Zhitkovich A (2022) Heat shock proteins and HSF1 in cancer. Front Oncol 12:860320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parsian AJ, Sheren JE, Tao TY, Goswami PC, Malyapa R, Van Rheeden R, Watson MS, Hunt CR (2000) The human Hsp70B gene at the HSPA7 locus of chromosome 1 is transcribed but non-functional. Biochim Biophys Acta 1494(1–2):201–205

    Article  CAS  PubMed  Google Scholar 

  18. Younis I, Berg M, Kaida D, Dittmar K, Wang C, Dreyfuss G (2010) Rapid-response splicing reporter screens identify differential regulators of constitutive and alternative splicing. Mol Cell Biol 30(7):1718–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. West JD, Wang Y, Morano KA (2012) Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise. Chem Res Toxicol 25(10):2036–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurop MK, Huyen CM, Kelly JH, Blagg BS (2021) The heat shock response and small molecule regulators. Eur J Med Chem 226:113846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim D, Kim SH, Li GC (1999) Proteasome inhibitors MG132 and lactacystin hyperphosphorylate HSF1 and induce hsp70 and hsp27 expression. Biochem Biophys Res Commun 254(1):264–268

    Article  CAS  PubMed  Google Scholar 

  22. Kijima T, Prince T, Neckers L, Koga F, Fujii Y (2019) Heat shock factor 1 (HSF1)-targeted anticancer therapeutics: overview of current preclinical progress. Expert Opin Ther Targets 23(5):369–377

    Article  CAS  PubMed  Google Scholar 

  23. Murshid A, Chou SD, Prince T, Zhang Y, Bharti A, Calderwood SK (2010) Protein kinase A binds and activates heat shock factor 1. PLoS One 5(11):e13830

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  PubMed  Google Scholar 

  25. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Prince .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ackerman, A., Kijima, T., Eguchi, T., Prince, T.L. (2023). Monitoring of the Heat Shock Response with a Real-Time Luciferase Reporter. In: Calderwood, S.K., Prince, T.L. (eds) Chaperones. Methods in Molecular Biology, vol 2693. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3342-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3342-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3341-0

  • Online ISBN: 978-1-0716-3342-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics