Skip to main content

Selecting Therapeutic Antisense Oligonucleotides with Gene Targeting and TLR8 Potentiating Bifunctionality

  • Protocol
  • First Online:
Inflammation and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2691))

  • 955 Accesses

Abstract

A growing body of preclinical evidence has led to the hypothesis that human Toll-like receptor 8 (hTLR8) activation in the tumor microenvironment (TME) could have potent anticancer effects through its action on monocytes, myeloid dendritic cells (mDCs), and natural killer (NK) cells. This has motivated the initiation of several clinical trials for chemical hTLR8 agonists in a variety of cancers. Concurrently, a growing number of synthetic antisense oligonucleotides (ASOs) are being developed as cancer therapeutics. We have recently reported that 2′-O-methyl (2′OMe)-modified ASOs can potentiate sensing of hTLR8 chemical agonists in a sequence-dependent manner. This suggests that select gene-targeting ASOs with anticancer activity may synergize with low-dose hTLR8 agonists in the TME. Here, we provide a detailed protocol to rapidly screen and identify such synthetic bifunctional oligonucleotides with synergistic activity on hTLR8 sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vickers TA, Koo S, Bennett CF et al (2003) Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem 278:7108–7118

    Article  CAS  PubMed  Google Scholar 

  2. Wu H, Lima WF, Crooke ST (1999) Properties of cloned and expressed human RNase H1. J Biol Chem 274:28270–28278

    Article  CAS  PubMed  Google Scholar 

  3. Crooke ST, Liang XH, Baker BF et al (2021) Antisense technology: a review. J Biol Chem 296:100416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Terada C, Kawamoto S, Yamayoshi A et al (2022) Chemistry of therapeutic oligonucleotides that drives interactions with biomolecules. Pharmaceutics 14:2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eckstein F (2014) Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther 24:374–387

    Article  CAS  PubMed  Google Scholar 

  6. Crooke ST, Wang S, Vickers TA et al (2017) Cellular uptake and trafficking of antisense oligonucleotides. Nat Biotechnol 35:230–237

    Article  CAS  PubMed  Google Scholar 

  7. Liang XH, Sun H, Shen W et al (2015) Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages. Nucleic Acids Res 43:2927–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shen W, De Hoyos CL, Migawa MT et al (2019) Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat Biotechnol 37:640–650

    Article  CAS  PubMed  Google Scholar 

  9. Migawa MT, Shen W, Wan WB et al (2019) Site-specific replacement of phosphorothioate with alkyl phosphonate linkages enhances the therapeutic profile of gapmer ASOs by modulating interactions with cellular proteins. Nucleic Acids Res 47:5465–5479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Karikó K, Buckstein M, Ni H et al (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–175

    Article  PubMed  Google Scholar 

  11. Judge AD, Sood V, Shaw JR et al (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23:457–462

    Article  CAS  PubMed  Google Scholar 

  12. Judge AD, Bola G, Lee AC et al (2006) Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 13:494–505

    Article  CAS  PubMed  Google Scholar 

  13. Zhu Y, Zhu L, Wang X et al (2022) RNA-based therapeutics: an overview and prospectus. Cell Death Dis 13:644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alharbi AS, Garcin AJ, Lennox KA et al (2020) Rational design of antisense oligonucleotides modulating the activity of TLR7/8 agonists. Nucleic Acids Res 48:7052–7065

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Valentin R, Wong C, Alharbi AS et al (2021) Sequence-dependent inhibition of cGAS and TLR9 DNA sensing by 2′-O-methyl gapmer oligonucleotides. Nucleic Acids Res 49:6082–6099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lind NA, Rael VE, Pestal K et al (2022) Regulation of the nucleic acid-sensing Toll-like receptors. Nat Rev Immunol 22:224–235

    Article  CAS  PubMed  Google Scholar 

  17. Tanji H, Ohto U, Shibata T et al (2013) Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science 339:1426–1429

    Article  CAS  PubMed  Google Scholar 

  18. Ostendorf T, Zillinger T, Andryka K et al (2020) Immune sensing of synthetic, bacterial, and protozoan RNA by Toll-like receptor 8 requires coordinated processing by RNase T2 and RNase 2. Immunity 52:591–605.e596

    Article  CAS  PubMed  Google Scholar 

  19. Greulich W, Wagner M, Gaidt MM et al (2019) TLR8 is a sensor of RNase T2 degradation products. Cell 179:1264–1275.e1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanji H, Ohto U, Shibata T et al (2015) Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat Struct Mol Biol 22:109–115

    Article  CAS  PubMed  Google Scholar 

  21. Shibata T, Ohto U, Nomura S et al (2016) Guanosine and its modified derivatives are endogenous ligands for TLR7. Int Immunol 28:211–222

    Article  CAS  PubMed  Google Scholar 

  22. Jurk M, Kritzler A, Schulte B et al (2006) Modulating responsiveness of human TLR7 and 8 to small molecule ligands with T-rich phosphorothiate oligodeoxynucleotides. Eur J Immunol 36:1815–1826

    Article  CAS  PubMed  Google Scholar 

  23. Gorden KK, Qiu X, Battiste JJ et al (2006) Oligodeoxynucleotides differentially modulate activation of TLR7 and TLR8 by imidazoquinolines. J Immunol 177:8164–8170

    Article  CAS  PubMed  Google Scholar 

  24. He M, Soni B, Schwalie PC et al (2022) Combinations of Toll-like receptor 8 agonist TL8-506 activate human tumor-derived dendritic cells. J Immunother Cancer 10:e004268

    Article  PubMed  PubMed Central  Google Scholar 

  25. McWhirter SM, Jefferies CA (2020) Nucleic acid sensors as therapeutic targets for human disease. Immunity 53:78–97

    Article  CAS  PubMed  Google Scholar 

  26. Sun H, Li Y, Zhang P et al (2022) Targeting Toll-like receptor 7/8 for immunotherapy: recent advances and prospectives. Biomark Res 10:89

    Article  PubMed  PubMed Central  Google Scholar 

  27. Baird JR, Monjazeb AM, Shah O et al (2017) Stimulating innate immunity to enhance radiation therapy-induced tumor control. Int J Radiat Oncol Biol Phys 99:362–373

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hornung V, Rothenfusser S, Britsch S et al (2002) Quantitative expression of Toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168:4531–4537

    Article  CAS  PubMed  Google Scholar 

  29. Lu H, Dietsch GN, Matthews MA et al (2012) VTX-2337 is a novel TLR8 agonist that activates NK cells and augments ADCC. Clin Cancer Res 18:499–509

    Article  CAS  PubMed  Google Scholar 

  30. Dang Y, Rutnam ZJ, Dietsch G et al (2018) TLR8 ligation induces apoptosis of monocytic myeloid-derived suppressor cells. J Leukoc Biol 103:157–164

    Article  CAS  PubMed  Google Scholar 

  31. Quemener AM, Bachelot L, Forestier A et al (2020) The powerful world of antisense oligonucleotides: from bench to bedside. Wiley Interdiscip Rev RNA 11:e1594

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lorentzen CL, Haanen JB, Met Ö et al (2022) Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol 23:e450–e458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Burris HA, Patel MR, Cho DC et al (2019) A phase 1, open-label, multicenter study to assess the safety, tolerability, and immunogenicity of mRNA-4157 alone in subjects with resected solid tumors and in combination with pembrolizumab in subjects with unresectable solid tumors (Keynote-603). JCO Glob Oncol 5:93

    Article  Google Scholar 

  34. Kranz LM, Diken M, Haas H et al (2016) Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534:396–401

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Speir for editorial assistance. This work was supported by funding from the Australian National Health and Medical Research Council (2020565 to MG) and the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Gantier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sapkota, S., Gantier, M.P. (2023). Selecting Therapeutic Antisense Oligonucleotides with Gene Targeting and TLR8 Potentiating Bifunctionality. In: Jenkins, B.J. (eds) Inflammation and Cancer. Methods in Molecular Biology, vol 2691. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3331-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3331-1_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3330-4

  • Online ISBN: 978-1-0716-3331-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics