Skip to main content

The GUS Reporter System in Flower Development Studies

  • Protocol
  • First Online:
Flower Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2686))

Abstract

The β-glucuronidase (GUS) reporter gene system is an important technique with versatile uses in the study of flower development in a broad range of species. Transcriptional and translational GUS fusions are used to characterize gene and protein expression patterns, respectively, during reproductive development. Additionally, GUS reporters can be used to map cis-regulatory elements within promoter sequences and to investigate whether genes are regulated post-transcriptionally. Gene trap/enhancer trap GUS constructs can be used to identify novel genes involved in flower development and marker lines useful in mutant characterization. Flower development studies primarily have used the histochemical assay in which inflorescence tissue from transgenic plants containing GUS reporter genes are stained for GUS activity and examined as whole-mounts or subsequently embedded into wax and examined as tissue sections. In addition, quantitative GUS activity assays can be performed on either floral extracts or intact flowers using a fluorogenic GUS substrate. Another use of GUS reporters is as a screenable marker for plant transformation. A simplified histochemical GUS assay can be used to quickly identify transgenic tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broothaerts W, Mitchell HJ, Weir B et al (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633

    Article  CAS  PubMed  Google Scholar 

  2. Blazquez M (2002) Quantitative GUS activity assays. In: Weigel D, Glazebrook J (eds) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 249–252

    Google Scholar 

  3. Bomblies K (2002) Whole-Mount GUS staining. In: Weigel D, Glazebrook J (eds) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 243–248

    Google Scholar 

  4. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  5. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krizek BA (2015) Intronic sequences are required for AINTEGUMENTA-LIKE6 expression in Arabidopsis flowers. BMC Res Notes 8:556

    Article  PubMed  PubMed Central  Google Scholar 

  7. Prasad K, Kushalappa K, Vijayraghavan U (2003) Mechanism underlying regulated expression of RFL, a conserved transcription factor, in the developing rice inflorescence. Mech Dev 120:491–502

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Z, Xing A, Staswick P, Clemente TE (1999) The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tissue Organ Cult 56:37–46

    Article  CAS  Google Scholar 

  9. Dwivedi KK, Roche DJ, Clemente TE et al (2014) The OCL3 promoter from Sorghum bicolor directs gene expressio to abscission and nutrient-transfer zones at the base of floral organs. Ann Bot 114:489–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang H, Fan M, Wang G et al (2017) Isolation and characterization of a novel pollen-specific promoter in maize (Zea mays L.). Genome 60:485–495

    Article  CAS  PubMed  Google Scholar 

  11. Kosugi S, Ohashi Y, Nakajima K, Arai Y (1990) An improved assay for β-glucuronidase in transformed cells: methanol almost completely suppresses a putative endogenous β-glucuronidase activity. Plant Sci 70:133–140

    Article  CAS  Google Scholar 

  12. Hill TA, Day CD, Zondlo SC et al (1998) Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125:1711–1721

    Article  CAS  PubMed  Google Scholar 

  13. Tilly JJ, Allen DW, Jack T (1998) The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125:1647–1657

    Article  CAS  PubMed  Google Scholar 

  14. Lee J-Y, Colinas J, Wang JY et al (2006) Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proc Natl Acad Sci U S A 103:6055–6060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Springer PS (2000) Gene traps: tools for plant development and genomics. Plant Cell 12:1007–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sundaresan V, Springer P, Volpe T et al (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev 9:1797–1810

    Article  CAS  PubMed  Google Scholar 

  17. Chiu W-H, Chandler JW, Cnops G et al (2007) Mutations in the TORNADO2 gene affect cellular decisions in the peripheral zone of the shoot apical meristem of Arabidopsis thaliana. Plant Mol Biol 63:731–744

    Article  CAS  PubMed  Google Scholar 

  18. Liljegren SJ, Ditta GS, Eshed Y et al (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770

    Article  CAS  PubMed  Google Scholar 

  19. Clemente TE, LaVallee BJ, Howe AR et al (2000) Progeny analysis of glyphosate selected transgenic soybeans derived from Agrobacterium-mediated transformation. Crop Sci 40:797–803

    Article  CAS  Google Scholar 

  20. Murray F, Brettell R, Matthews P et al (2004) Comparison of Agrobacterium-mediated transformation of four barley cultivars using the GFP and GUS reporter genes. Plant Cell Rep 22:397–402

    Article  CAS  PubMed  Google Scholar 

  21. Fitzmaurice WP, Lehman LJ, Nguyen LV et al (1992) Development and characterization of a generalized gene tagging system for higher plants using an engineered maize transposon Ac. Plant Mol Biol 20:177–198

    Article  CAS  PubMed  Google Scholar 

  22. Fitzmaurice WP, Nguyen LV, Wernsman EA et al (1999) Transposon tagging of the Sulfur gene of tobacco using engineered maize Ac/Ds elements. Genetics 153:1919–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qu S, Jeon JS, Ouwerkerk PB, Bellizzi M et al (2009) Construction and application of efficient Ac-Ds transposon tagging vectors in rice. J Integr Plant Biol 51:982–992

    Article  CAS  PubMed  Google Scholar 

  24. Bossinger G, Smyth DR (1996) Initiation patterns of flower and floral organ development in Arabidopsis thaliana. Development 122:1093–1102

    Article  CAS  PubMed  Google Scholar 

  25. Lee G, Rodgers L, Taylor BH (1995) β-Glucuronidase as a marker for clonal analysis of tomato lateral roots. Transgenic Res 4:123–131

    Article  CAS  Google Scholar 

  26. Mascarenhas JP, Hamilton DA (1992) Artifacts in the localization of GUS activity in anthers of petunia transformed with a CaMV 35S-GUS construct. Plant J 2:405–408

    Article  CAS  Google Scholar 

  27. Sessions A, Burke E, Presting G et al (2002) A high throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blazquez MA, Soowal LN, Lee I, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124:3835–3844

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth A. Krizek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mudunkothge, J.S., Hancock, C.N., Krizek, B.A. (2023). The GUS Reporter System in Flower Development Studies. In: Riechmann, J.L., Ferrándiz, C. (eds) Flower Development . Methods in Molecular Biology, vol 2686. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3299-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3299-4_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3298-7

  • Online ISBN: 978-1-0716-3299-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics