Skip to main content

Primary Culture of the Human Olfactory Neuroepithelium and Utilization for Henipavirus Infection In Vitro

  • Protocol
  • First Online:
Nipah Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2682))

Abstract

The olfactory receptor neurons (ORNs) are a unique cell type involved in the initial perception of odors. These specialized epithelial cells are located in the neuroepithelium of the nasal cavities and directly connect the nasal cavity with the central nervous system (CNS) via axons, which traverse the cribriform plate to synapse within the olfactory bulb. ORNs are derived from precursor cells that lie adjacent to the basal lamina of the olfactory epithelium. These precursor cells divide several times and their progeny differentiate into mature sensory neurons throughout life. In addition to its major and critical role in sensory transduction, the olfactory neuroepithelium may be an important tissue for viral replication and represents a potential site for viral entry into the CNS. In general, to gain access to the CNS, neurotropic viruses such as henipaviruses can use peripheral neural pathways or the circulatory system. However, the olfactory system has been reported to provide a portal of entry to the CNS for henipaviruses. The ability to obtain biopsies from living human subjects and culture these cells in the laboratory provides the opportunity to examine viral replication and effects on a neuronal cell population. As the most exposed and unprotected segment of the nervous system, the olfactory neuroepithelium may have an important role in neuropathology and systemic dissemination of viruses with established CNS effects. This chapter presents methods for primary culture of human ORNs, which have been used successfully by multiple investigators. The protocol provides a consistent, heterogeneous olfactory epithelial cell population, which demonstrates functional responses to odorant mixtures and exhibits several key features of the olfactory receptor neuron phenotype, encompassing olfactory receptors and signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Paik S, Lehman M, Seiden AM, Duncan HJ (1992) Olfactory biopsy. Arch Otolaryngol Head Neck Surg 118(7):731–738

    Article  CAS  PubMed  Google Scholar 

  2. Trojanowski JQ, Newman PD, Hill WD, Lee VM (1991) Human olfactory epithelium in normal aging, Alzheimer’s disease, and other neurodegenerative disorders. J Comp Neurol. https://doi.org/10.1002/cne.903100307

  3. Leopold DA, Hummel T, Schwob JE et al (2000) Anterior distribution of human olfactory epithelium. Laryngoscope. https://doi.org/10.1097/00005537-200003000-00016

  4. Kream RM, Margolis FL (1984) Olfactory marker protein: turnover and transport in normal and regenerating neurons. J Neurosci 4(3):868–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Monti Graziadei GA, Margolis FL, Harding JW, Gradiadei PPC (1977) Immunocytochemistry of the olfactory marker protein. J Histochem Cytochem. https://doi.org/10.1177/25.12.336785

  6. Ling G, Gu J, Genter MB et al (2004) Regulation of cytochrome P450 gene expression in the olfactory mucosa. Chem Biol Interact 147(3):247–258

    Article  CAS  PubMed  Google Scholar 

  7. Schlage WK, Bülles H, Friedrichs D et al (1998) Cytokeratin expression patterns in the rat respiratory tract as markers of epithelial differentiation in inhalation toxicology. I. Determination of normal cytokeratin expression patterns in nose, larynx, trachea, and lung. Toxicol Pathol. https://doi.org/10.1177/019262339802600307

  8. Feron F, Bianco J, Ferguson I, Mackay-Sim A (2008) Neurotrophin expression in the adult olfactory epithelium. Brain Res. https://doi.org/10.1016/j.brainres.2007.12.003

  9. Lane AP, Gomez G, Dankulich T et al (2002) The superior turbinate as a source of functional human olfactory receptor neurons. Laryngoscope. https://doi.org/10.1097/00005537-200207000-00007

  10. Lovell MA, Jafek BW, Moran DT, Rowley JC (1982) Biopsy of human olfactory mucosa: an instrument and a technique. Arch Otolaryngol. https://doi.org/10.1001/archotol.1982.00790520047013

  11. Lanza DC, Deems DA, Doty RL et al (1994) The effect of human olfactory biopsy on olfaction: a preliminary report. Laryngoscope. https://doi.org/10.1288/00005537-199407000-00010

  12. Hahn CG, Gomez G, Restrepo D et al (2005) Aberrant intracellular calcium signaling in olfactory neurons from patients with bipolar disorder. Am J Psychiatry. https://doi.org/10.1176/appi.ajp.162.3.616

  13. Matigian N, Abrahamsen G, Sutharsan R et al (2010) Disease-specific, neurosphere-derived cells as models for brain disorders. Dis Model Mech. https://doi.org/10.1242/dmm.005447

  14. McCurdy RD, Féron F, Perry C et al (2006) Cell cycle alterations in biopsied olfactory neuroepithelium in schizophrenia and bipolar I disorder using cell culture and gene expression analyses. Schizophr Res. https://doi.org/10.1016/j.schres.2005.10.012

  15. Hahn CG, Han LY, Rawson NE et al (2005) In vivo and in vitro neurogenesis in human olfactory epithelium. J Comp Neurol. https://doi.org/10.1002/cne.20424

  16. Borgmann-Winter KE, Rawson NE, Wang H-Y et al (2009) Human olfactory epithelial cells generated in vitro express diverse neuronal characteristics. Neuroscience 158. https://doi.org/10.1016/j.neuroscience.2008.09.059

  17. Rawson NE, Gomez G, Cowart B et al (1997) Selectivity and response characteristics of human olfactory neurons. J Neurophysiol 77:1606–1613

    Article  CAS  PubMed  Google Scholar 

  18. Gomez G, Rawson NE, Hahn CG et al (2000) Characteristics of odorant elicited calcium changes in cultured human olfactory neurons. J Neurosci Res 62:737–749. https://doi.org/10.1002/1097-4547(20001201)62:5<737::AID-JNR14>3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  19. Wolozin B, Sunderland T, Zheng B et al (1992) Continuous culture of neuronal cells from adult human olfactory epithelium. J Mol Neurosci 3:137–146. https://doi.org/10.1007/BF02919405

    Article  CAS  PubMed  Google Scholar 

  20. Danciger E, Mettling C, Vidal M et al (1989) Olfactory marker protein gene: its structure and olfactory neuron- specific expression in transgenic mice. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.86.21.8565

  21. Yee KK, Pribitkin EA, Cowart BJ et al (2010) Neuropathology of the olfactory mucosa in chronic rhinosinusitis. Am J Rhinol Allergy. https://doi.org/10.2500/ajra.2010.24.3435

  22. Ensoli F, Fiorelli V, Vannelli B et al (1998) Basic fibroblast growth factor supports human olfactory neurogenesis by autocrine/paracrine mechanisms. Neuroscience. https://doi.org/10.1016/S0306-4522(98)00104-3

  23. van Riel D, Verdijk R, Kuiken T (2014) The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol 235:277–287. https://doi.org/10.1002/path.4461

    Article  CAS  Google Scholar 

  24. Durrant DM, Ghosh S, Klein RS (2016) The olfactory bulb: an immunosensory effector organ during neurotropic viral infections. ACS Chem Neurosci 7(4):464–469

    Article  CAS  PubMed  Google Scholar 

  25. Borisevich V, Ozdener MH, Malik B, Rockx B (2017) Hendra and Nipah virus infection in cultured human olfactory epithelial cells. mSphere. https://doi.org/10.1128/mSphere.00252-17

  26. Durrant DM, Ghosh S, Klein RS (2016) The olfactory bulb: an immunosensory effector organ during neurotropic viral infections. ACS Chem Neurosci 7:464–469. https://doi.org/10.1021/acschemneuro.6b00043

    Article  CAS  PubMed  Google Scholar 

  27. Koyuncu OO, Hogue IB, Enquist LW (2013) Virus infections in the nervous system. Cell Host Microbe 13:379–393. https://doi.org/10.1016/j.chom.2013.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Riel D, Verdijk R, Kuiken T (2015) The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol. https://doi.org/10.1002/path.4461

  29. Borisevich V, Ozdener MH, Malik B, Rockx B (2017) Hendra and Nipah virus infection in cultured human olfactory epithelial cells. mSphere 2. https://doi.org/10.1128/mSphere.00252-17

  30. Munster VJ, Prescott JB, Bushmaker T et al (2012) Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Sci Rep 2:736. https://doi.org/10.1038/srep00736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Féron F, Perry C, McGrath JJ, Mackay-Sim A (1998) New techniques for biopsy and culture of human olfactory epithelial neurons. Arch Otolaryngol Head Neck Surg. https://doi.org/10.1001/archotol.124.8.861

  32. Restrepo D, Okada Y, Teeter JH et al (1993) Human olfactory neurons respond to odor stimuli with an increase in cytoplasmic Ca2+. Biophys J. https://doi.org/10.1016/S0006-3495(93)81565-0

  33. Rawson NE, Brand JG, Cowart BJ et al (1995) Functionally mature olfactory neurons from two anosmic patients with Kallmann syndrome. Brain Res. https://doi.org/10.1016/0006-8993(95)00283-V

  34. Ronnett GV, Leopold D, Cai X et al (2003) Olfactory biopsies demonstrate a defect in neuronal development in Rett’s syndrome. Ann Neurol. https://doi.org/10.1002/ana.10633

  35. Johnson GS, Basaric-Keys J, Ghanbari HA et al (1994) Protein alterations in olfactory neuroblasts from Alzheimer donors. Neurobiol Aging. https://doi.org/10.1016/0197-4580(94)90048-5

  36. Féron F, Vincent A, Mackay-Sim A (1999) Dopamine promotes differentiation of olfactory neuron in vitro. Brain Res. https://doi.org/10.1016/S0006-8993(99)01959-9

  37. Vawter MP, Basaric-Keys J, Yunhua L et al (1996) Human olfactory neuroepithelial cells: tyrosine phosphorylation and process extension are increased by the combination of IL-1β, IL-6, NGF, and bFGF. Exp Neurol. https://doi.org/10.1006/exnr.1996.0189

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Hakan Ozdener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ozdener, M.H., Rockx, B., Rawson, N.E. (2023). Primary Culture of the Human Olfactory Neuroepithelium and Utilization for Henipavirus Infection In Vitro. In: Freiberg, A.N., Rockx, B. (eds) Nipah Virus. Methods in Molecular Biology, vol 2682. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3283-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3283-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3282-6

  • Online ISBN: 978-1-0716-3283-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics