Skip to main content

Construction of Synthetic VHH Libraries in Ribosome Display Format

  • Protocol
  • First Online:
Genotype Phenotype Coupling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2681))

Abstract

Single-domain antibodies, or VHH, represent an attractive molecular basis to design affinity proteins with favorable properties. Beyond high affinity and specificity for their cognate target, they usually show high stability and high production yields in bacteria, yeast, or mammalian cells. In addition to these favorable properties, their ease of engineering makes them useful for many applications. Until the past few years, the generation of VHH involved the immunization of a Camelidae with the target antigen, followed by a phage display selection using phage libraries encoding the VHH repertoire of the animal blood sample. However, this approach is constrained by the accessibility to the animals, and the output relies on the animal’s immune system.

Recently, synthetic VHH libraries have been designed to avoid the use of animals. Here, we describe the construction of VHH combinatorial libraries and their use for the selection of binders by ribosome display, a fully in vitro selection technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamers-Casterman C, Atarhouch T, Muyldermans S et al (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448

    Article  CAS  PubMed  Google Scholar 

  2. de Marco A (2020) Recombinant expression of nanobodies and nanobody-derived immunoreagents. Protein Expr Purif 172:105645

    Article  PubMed  PubMed Central  Google Scholar 

  3. Goldman ER, Liu JL, Zabetakis D, Anderson GP (2017) Enhancing stability of camelid and shark single domain antibodies: an overview. Front Immunol 8:865

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pia EAD, Martinez KL (2015) Single domain antibodies as a powerful tool for high quality surface plasmon resonance studies. PLoS One 10:e0124303

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huang C, Ren J, Ji F et al (2020) Nanobody-based high-performance immunosorbent for selective beta 2-microglobulin purification from blood. Acta Biomater 107:232–241

    Article  CAS  PubMed  Google Scholar 

  6. Verheesen P, ten Haaft MR, Lindner N et al (2003) Beneficial properties of single-domain antibody fragments for application in immunoaffinity purification and immuno-perfusion chromatography. Biochim Biophys Acta 1624:21–28

    Article  CAS  PubMed  Google Scholar 

  7. Rasmussen SGF, Choi H-J, Fung JJ et al (2011) Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature 469:175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Löw C, Yau YH, Pardon E et al (2013) Nanobody mediated crystallization of an archeal mechanosensitive channel. PLoS One 8:e77984

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yamagata M, Sanes JR (2018) Reporter–nanobody fusions (RANbodies) as versatile, small, sensitive immunohistochemical reagents. Proc Natl Acad Sci 115:2126–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kijanka M, van Donselaar EG, Muller WH et al (2017) A novel immuno-gold labeling protocol for nanobody-based detection of HER2 in breast cancer cells using immuno-electron microscopy. J Struct Biol 199:1–11

    Article  CAS  PubMed  Google Scholar 

  11. Baral TN, Magez S, Stijlemans B et al (2006) Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nat Med 12:580–584

    Article  CAS  PubMed  Google Scholar 

  12. Ackaert C, Smiejkowska N, Xavier C et al (2021) Immunogenicity risk profile of nanobodies. Front Immunol 12:632687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bridoux J, Broos K, Lecocq Q et al (2020) Anti-human PD-L1 nanobody for immuno-PET imaging: validation of a conjugation strategy for clinical translation. Biomol Ther 10:E1388

    Google Scholar 

  14. Xavier C, Vaneycken I, D’huyvetter M et al (2013) Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 Nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med 54:776–784

    Article  CAS  PubMed  Google Scholar 

  15. Chanier T, Chames P (2019) Nanobody engineering: toward next generation immunotherapies and immunoimaging of cancer. Antibodies (Basel) 8:13

    Article  CAS  PubMed  Google Scholar 

  16. Morrison C (2019) Nanobody approval gives domain antibodies a boost. Nat Rev Drug Discov 18:485–487

    Article  CAS  PubMed  Google Scholar 

  17. Pardon E, Laeremans T, Triest S et al (2014) A general protocol for the generation of Nanobodies for structural biology. Nat Protoc 9:674–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yan J, Li G, Hu Y et al (2014) Construction of a synthetic phage-displayed Nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. J Transl Med 12:343

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yan J, Wang P, Zhu M et al (2015) Characterization and applications of Nanobodies against human procalcitonin selected from a novel naïve Nanobody phage display library. J Nanobiotechnol 13:33

    Article  Google Scholar 

  20. Moutel S, Bery N, Bernard V et al (2016) NaLi-H1: a universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. eLife 5:e16228

    Article  PubMed  PubMed Central  Google Scholar 

  21. McMahon C, Baier AS (2018) Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat Struct Mol Biol 25:289–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zimmermann I, Egloff P, Hutter CAJ et al (2020) Generation of synthetic nanobodies against delicate proteins. Nat Protoc 15:1707–1741

    Article  CAS  PubMed  Google Scholar 

  23. Chen X, Gentili M, Hacohen N, Regev A (2021) A cell-free nanobody engineering platform rapidly generates SARS-CoV-2 neutralizing nanobodies. Nat Commun 12:5506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mouratou B, Schaeffer F, Guilvout I et al (2007) Remodeling a DNA-binding protein as a specific in vivo inhibitor of bacterial secretin PulD. Proc Natl Acad Sci U S A 104:17983–17988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kalichuk V, Renodon-Corniere A, Behar G et al (2018) A novel, smaller scaffold for Affitins: showcase with binders specific for EpCAM. Biotechnol Bioeng 115:10

    Article  Google Scholar 

  26. Kalichuk V, Kambarev S, Behar G et al (2020) Affitins: ribosome display for selection of Aho7c-based affinity proteins. Methods Mol Biol 2070:19–41

    Article  CAS  PubMed  Google Scholar 

  27. Hanes J, Pluckthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 94:4937–4942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Amstutz P, Binz HK, Zahnd C, Pluckthun A (2006) Ribosome display: in vitro selection of protein-protein interactions. In: Celis J (ed) Cell biology – a laboratory handbook. Elsevier Academic Press, pp 497–509

    Google Scholar 

Download references

Acknowledgments

The authors thank all previous members of the laboratory who helped to develop this protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Pecorari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guilbaud, A., Pecorari, F. (2023). Construction of Synthetic VHH Libraries in Ribosome Display Format. In: Zielonka, S., Krah, S. (eds) Genotype Phenotype Coupling. Methods in Molecular Biology, vol 2681. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3279-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3279-6_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3278-9

  • Online ISBN: 978-1-0716-3279-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics