Skip to main content

Eye-Tracking Methods in Psycholinguistics

  • Protocol
  • First Online:
Language Electrified

Part of the book series: Neuromethods ((NM,volume 202))

  • 663 Accesses

Abstract

Rapid technological advancements have led to a significant progress in research methods for cognitive sciences. Today scientists can use various neurophysiological methods to study human behavior and its underlying neuroanatomical and cognitive mechanisms. Among such methods is eye-tracking—a technique allowing recording and analysis of online oculomotor behavior. In this chapter, we first review the use of eye-tracking methodology in cognitive research—both as a stand-alone method and in combination with electroencephalography. We then discuss eye-tracking in terms of its application in language research, from studying sentence comprehension and sentence production, to second language learning and bilingualism. Finally, we discuss co-registration of brain-ocular activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yarbus AL (1965) Role of eye movements in the visual process. Nauka, Oxford, UK

    Google Scholar 

  2. Duchowski AT (2017) Diversity and types of eye tracking applications. In: Eye tracking methodology. Springer, Cham, pp 247–248

    Chapter  Google Scholar 

  3. Holmqvist K, Nyström M, Andersson R et al (2011) Eye tracking: a comprehensive guide to methods and measures. OUP, Oxford

    Google Scholar 

  4. Laeng B, Sirois S, Gredebäck G (2012) Pupillometry: a window to the preconscious? Perspect Psychol Sci 7(1):18–27

    Article  PubMed  Google Scholar 

  5. Mathôt S (2018) Pupillometry: psychology, physiology, and function. J Cogn 1(1)

    Google Scholar 

  6. Raney GE, Campbell SJ, Bovee JC (2014) Using eye movements to evaluate the cognitive processes involved in text comprehension. JoVE (J Vis Exp) 83:e50780

    Google Scholar 

  7. Miles WR (1930) Ocular dominance in human adults. J Gen Psychol 3(3):412–430

    Article  Google Scholar 

  8. Nyström M, Andersson R, Holmqvist K et al (2013) The influence of calibration method and eye physiology on eyetracking data quality. Behav Res Methods 45(1):272–288

    Article  PubMed  Google Scholar 

  9. Rayner K (1998) Eye movements in reading and information processing: 20 years of research. Psychol Bull 124(3):372

    Article  CAS  PubMed  Google Scholar 

  10. Rayner K, Sereno SC, Raney GE (1996) Eye movement control in reading: a comparison of two types of models. J Exp Psychol Hum Percept Perform 22(5):1188

    Article  CAS  PubMed  Google Scholar 

  11. Clifton C Jr, Ferreira F, Henderson JM et al (2016) Eye movements in reading and information processing: Keith Rayner’s 40 year legacy. J Mem Lang 86:1–19

    Article  Google Scholar 

  12. Pickering MJ, Frisson S, McElree B et al (2004) Eye movements and semantic composition. In: The on-line study of sentence comprehension: eyetracking, ERP, and beyond. Psychology Press, pp 33–50

    Google Scholar 

  13. Staub A, Rayner K (2007) Eye movements and on-line comprehension processes. In: The Oxford handbook of psycholinguistics, vol 327. Oxford University Press, Oxford, p 342

    Google Scholar 

  14. Henderson JM, Luke SG, Schmidt J et al (2013) Co-registration of eye movements and event-related potentials in connected-text paragraph reading. Front Syst Neurosci 7:28

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rayner K, Pollatsek A, Reisberg D (2013) Basic processes in reading. In: The Oxford handbook of cognitive psychology. Oxford University Press, New York, pp 442–461

    Google Scholar 

  16. Kennedy A (2000) Parafoveal processing in word recognition. Q J Exp Psychol A 53(2):429–455

    Article  CAS  PubMed  Google Scholar 

  17. Starr M, Inhoff A (2004) Attention allocation to the right and left of a fixated word: use of orthographic information from multiple words during reading. Eur J Cogn Psychol 16(1–2):203–225

    Article  Google Scholar 

  18. Rayner K, Duffy SA (1986) Lexical complexity and fixation times in reading: effects of word frequency, verb complexity, and lexical ambiguity. Mem Cogn 14(3):191–201

    Article  CAS  Google Scholar 

  19. Juhasz BJ, White SJ, Liversedge SP et al (2008) Eye movements and the use of parafoveal word length information in reading. J Exp Psychol Hum Percept Perform 34(6):1560

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rayner K, Slattery TJ, Drieghe D et al (2011) Eye movements and word skipping during reading: effects of word length and predictability. J Exp Psychol Hum Percept Perform 37(2):514

    Article  PubMed  PubMed Central  Google Scholar 

  21. Clifton C Jr, Staub A, Clifton C (2011) Syntactic influences on eye movements during reading. Eye 3(2)

    Google Scholar 

  22. Ehrlich K, Rayner K (1983) Pronoun assignment and semantic integration during reading: eye movements and immediacy of processing. J Verbal Learn Verbal Behav 22(1):75–87

    Article  Google Scholar 

  23. Brysbaert M, Drieghe D, Vitu F (2005) Cognitive processes in eye guidance. Oxford University Press, Oxford

    Google Scholar 

  24. Rayner K (1986) Eye movements and the perceptual span in beginning and skilled readers. J Exp Child Psychol 41(2):211–236

    Article  CAS  PubMed  Google Scholar 

  25. McConkie GW, Zola D, Grimes J et al (1991) Children’s eye movements during reading. Vis Vis Dyslexia 13:251–262

    Google Scholar 

  26. Blythe HI, Liversedge SP, Joseph HS et al (2006) The binocular coordination of eye movements during reading in children and adults. Vis Res 46(22):3898–3908

    Article  PubMed  Google Scholar 

  27. Feng G, Miller K, Shu H et al (2009) Orthography and the development of reading processes: an eye-movement study of Chinese and English. Child Dev 80(3):720–735

    Article  PubMed  Google Scholar 

  28. Huestegge L, Radach R, Corbic D et al (2009) Oculomotor and linguistic determinants of reading development: a longitudinal study. Vis Res 49(24):2948–2959

    Article  PubMed  Google Scholar 

  29. Ashby J, Rayner K, Clifton C (2005) Eye movements of highly skilled and average readers: differential effects of frequency and predictability. Q J Exp Psychol A 58(6):1065–1086

    Article  PubMed  Google Scholar 

  30. Chace KH, Rayner K, Well AD (2005) Eye movements and phonological parafoveal preview: effects of reading skill. Can J Exp Psychol/Revue canadienne de psychologie expérimentale 59(3):209

    Article  PubMed  Google Scholar 

  31. Huettig F, Rommers J, Meyer AS (2011) Using the visual world paradigm to study language processing: a review and critical evaluation. Acta Psychol 137(2):151–171

    Article  Google Scholar 

  32. Cooper RM (1974) The control of eye fixation by the meaning of spoken language: a new methodology for the real-time investigation of speech perception, memory, and language processing. Cogn Psychol 6:813–839

    Article  Google Scholar 

  33. Eberhard KM, Spivey-Knowlton MJ, Sedivy JC et al (1995) Eye movements as a window into real-time spoken language comprehension in natural contexts. J Psycholinguist Res 24(6):409–436

    Article  CAS  PubMed  Google Scholar 

  34. Tanenhaus MK, Spivey-Knowlton MJ, Eberhard KM et al (1996) Using eye movements to study spoken language comprehension: evidence for visually mediated incremental interpretation

    Google Scholar 

  35. Altmann GT, Kamide Y (1999) Incremental interpretation at verbs: restricting the domain of subsequent reference. Cognition 73(3):247–264

    Article  CAS  PubMed  Google Scholar 

  36. Tanenhaus MK, Spivey-Knowlton MJ, Eberhard KM et al (1995) Integration of visual and linguistic information in spoken language comprehension. Science 268(5217):1632–1634

    Article  CAS  PubMed  Google Scholar 

  37. Allopenna PD, Magnuson JS, Tanenhaus MK (1998) Tracking the time course of spoken word recognition using eye movements: evidence for continuous mapping models. J Mem Lang 38(4):419–439

    Article  Google Scholar 

  38. Tanenhaus MK, Trueswell JC (2006) Eye movements and spoken language comprehension. In: Handbook of psycholinguistics. Academic Press, pp 863–900

    Chapter  Google Scholar 

  39. Knoeferle P, Crocker MW, Scheepers C, Pickering MJ (2005) The influence of the immediate visual context on incremental thematic role-assignment: evidence from eye-movements in depicted events. Cognition 95(1):95–127

    Article  PubMed  Google Scholar 

  40. Knoeferle P, Crocker MW (2005) Incremental effects of mismatch during picture-sentence integration: evidence from eye-tracking. In: Proceedings of the 26th annual conference of the Cognitive Science Society, pp 1166–1171

    Google Scholar 

  41. Huettig F, McQueen JM (2007) The tug of war between phonological, semantic and shape information in language-mediated visual search. J Mem Lang 57(4):460–482

    Article  Google Scholar 

  42. Weber A, Melinger A, Lara Tapia L (2007) The mapping of phonetic information to lexical presentations in Spanish: evidence from eye movements. In: 16th international congress of phonetic sciences (ICPhS 2007). Pirrot, pp 1941–1944

    Google Scholar 

  43. Meyer AS, Sleiderink AM, Levelt WJ (1998) Viewing and naming objects: eye movements during noun phrase production. Cognition 66(2):B25–B33

    Article  CAS  PubMed  Google Scholar 

  44. Bock K, Irwin DE, Davidson DJ et al (2003) Minding the clock. J Mem Lang 48(4):653–685

    Article  Google Scholar 

  45. Griffin ZM (2001) Gaze durations during speech reflect word selection and phonological encoding. Cognition 82(1):B1–B14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Griffin ZM, Bock K (2000) What the eyes say about speaking. Psychol Sci 11(4):274–279

    Article  CAS  PubMed  Google Scholar 

  47. Griffin ZM, Weinstein-Tull J (2003) Conceptual structure modulates structural priming in the production of complex sentences. J Mem Lang 49(4):537–555

    Article  PubMed  PubMed Central  Google Scholar 

  48. Buswell GT (1920) An experimental study of the eye-voice span in reading (No. 17). University of Chicago

    Google Scholar 

  49. Fairbanks G (1937) The relation between eye-movements and voice in the oral reading of good and poor silent readers. Psychol Monogr 48(3):78

    Article  Google Scholar 

  50. Gleitman LR, January D, Nappa R et al (2007) On the give and take between event apprehension and utterance formulation. J Mem Lang 57(4):544–569

    Article  PubMed  PubMed Central  Google Scholar 

  51. Myachykov A, Scheepers C, Garrod S et al (2013) Syntactic flexibility and competition in sentence production: the case of English and Russian. Q J Exp Psychol 66(8):1601–1619

    Article  Google Scholar 

  52. Conklin K, Pellicer-Sánchez A (2016) Using eye-tracking in applied linguistics and second language research. Second Lang Res 32(3):453–467

    Article  Google Scholar 

  53. Bolger DJ, Balass M, Landen E et al (2008) Context variation and definitions in learning the meanings of words: an instance-based learning approach. Discourse Process 45(2):122–159

    Article  Google Scholar 

  54. Reichle ED, Perfetti CA (2003) Morphology in word identification: a word-experience model that accounts for morpheme frequency effects. Sci Stud Read 7(3):219–237

    Article  Google Scholar 

  55. Chaffin R, Morris RK, Seely RE (2001) Learning new word meanings from context: a study of eye movements. J Exp Psychol Learn Mem Cogn 27(1):225

    Article  CAS  PubMed  Google Scholar 

  56. Joseph HS, Wonnacott E, Forbes P et al (2014) Becoming a written word: eye movements reveal order of acquisition effects following incidental exposure to new words during silent reading. Cognition 133(1):238–248

    Article  PubMed  Google Scholar 

  57. Li L, Marinus E, Castles A, Yu L et al (2019) Eye-tracking the effect of semantic decoding on orthographic learning in Chinese

    Google Scholar 

  58. Lowell R, Morris RK (2014) Word length effects on novel words: evidence from eye movements. Atten Percept Psychophys 76(1):179–189

    Article  PubMed  Google Scholar 

  59. Godfroid A, Boers F, Housen A (2013) An eye for words: gauging the role of attention in incidental L2 vocabulary acquisition by means of eye-tracking. Stud Second Lang Acquis 35(3):483–517

    Article  Google Scholar 

  60. Godfroid A, Ahn J, Choi I et al (2018) Incidental vocabulary learning in a natural reading context: an eye-tracking study. Biling Lang Congn 21(3):563–584

    Article  Google Scholar 

  61. Wochna KL, Juhasz BJ (2013) Context length and reading novel words: an eye-movement investigation. Br J Psychol 104(3):347–363

    Article  PubMed  Google Scholar 

  62. Balling LW (2013) Does good writing mean good reading?: an eye-tracking investigation of the effect of writing advice on reading. Fachsprache Int J Spec Commun 35(1–2):2–23

    Google Scholar 

  63. Cop U, Keuleers E, Drieghe D, Duyck W (2015) Frequency effects in monolingual and bilingual natural reading. Psychon Bull Rev 22(5):1216–1234

    Article  PubMed  Google Scholar 

  64. Elgort I, Brysbaert M, Stevens M, Van Assche E (2018) Contextual word learning during reading in a second language: an eye-movement study. Stud Second Lang Acquis 40(2):341–366

    Article  Google Scholar 

  65. Koval NG (2019) Testing the deficient processing account of the spacing effect in second language vocabulary learning: evidence from eye tracking. Appl Psycholinguist 40(5):1103–1139

    Article  Google Scholar 

  66. Marian V, Spivey M (2003) Competing activation in bilingual language processing: within-and between-language competition. Biling Lang Congn 6(2):97–115

    Article  Google Scholar 

  67. Marian V, Spivey M, Hirsch J (2003) Shared and separate systems in bilingual language processing: converging evidence from eyetracking and brain imaging. Brain Lang 86(1):70–82

    Article  PubMed  Google Scholar 

  68. Mohamed AA (2018) Exposure frequency in L2 reading: an eye-movement perspective of incidental vocabulary learning. Stud Second Lang Acquis 40(2):269–293

    Article  Google Scholar 

  69. Pellicer-Sánchez A (2016) Incidental L2 vocabulary acquisition from and while reading: an eye-tracking study. Stud Second Lang Acquis 38(1):97–130

    Article  Google Scholar 

  70. Altarriba J, Kroll JF, Sholl A et al (1996) The influence of lexical and conceptual constraints on reading mixed-language sentences: evidence from eye fixations and naming times. Mem Cogn 24(4):477–492

    Article  CAS  Google Scholar 

  71. Libben MR, Titone DA (2009) Bilingual lexical access in context: evidence from eye movements during reading. J Exp Psychol Learn Mem Cogn 35(2):381

    Article  PubMed  Google Scholar 

  72. Chambers CG, Cooke H (2009) Lexical competition during second-language listening: sentence context, but not proficiency, constrains interference from the native lexicon. J Exp Psychol Learn Mem Cogn 35(4):1029

    Article  PubMed  Google Scholar 

  73. Ju M, Luce PA (2004) Falling on sensitive ears: constraints on bilingual lexical activation. Psychol Sci 15(5):314–318

    Article  PubMed  Google Scholar 

  74. Bentin S, Mouchetant-Rostaing Y, Giard MH et al (1999) ERP manifestations of processing printed words at different psycholinguistic levels: time course and scalp distribution. J Cogn Neurosci 11(3):235–260

    Article  CAS  PubMed  Google Scholar 

  75. Coulson S (2007) Electrifying results: ERP data and cognitive linguistics. Methods Cogn Linguist 18:400

    Article  Google Scholar 

  76. Ganushchak L, Christoffels I, Schiller NO (2011) The use of electroencephalography in language production research: a review. Front Psychol 2:208

    Article  PubMed  PubMed Central  Google Scholar 

  77. Indefrey P, Levelt WJ (2000) The neural correlates of language production. In: The new cognitive neurosciences, 2nd edn. MIT press, pp 845–865

    Google Scholar 

  78. Kutas M, Van Petten CK, Kluender R (2006) Psycholinguistics electrified II (1994–2005). In: Handbook of psycholinguistics. Academic Press, pp 659–724

    Chapter  Google Scholar 

  79. MacGregor LJ, Pulvermüller F, Van Casteren M et al (2012) Ultra-rapid access to words in the brain. Nat Commun 3:711

    Article  PubMed  Google Scholar 

  80. Shtyrov Y, Lenzen M (2017) First-pass neocortical processing of spoken language takes only 30 msec: electrophysiological evidence. Cogn Neurosci 8(1):24–38

    Article  PubMed  Google Scholar 

  81. Assadollahi R, Pulvermüller F (2001) Neuromagnetic evidence for early access to cognitive representations. Neuroreport 12:207–213

    Article  CAS  PubMed  Google Scholar 

  82. Carreiras M, Vergara M, Barber H (2005) Early event-related potential effects of syllabic processing during visual word recognition. J Cogn Neurosci 17(11):1803–1817

    Article  PubMed  Google Scholar 

  83. Proverbio AM, Vecchi L, Zani A (2004) From orthography to phonetics: ERP measures of grapheme-to-phoneme conversion mechanisms in reading. J Cogn Neurosci 16(2):301–317

    Article  PubMed  Google Scholar 

  84. Kutas M, Federmeier KD (2011) Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu Rev Psychol 62:621–647

    Article  PubMed  PubMed Central  Google Scholar 

  85. Friederici AD, Weissenborn J (2007) Mapping sentence form onto meaning: the syntax–semantic interface. Brain Res 1146:50–58

    Article  CAS  PubMed  Google Scholar 

  86. Hutzler F, Braun M, Võ MLH et al (2007) Welcome to the real world: validating fixation-related brain potentials for ecologically valid settings. Brain Res 1172:124–129. https://doi.org/10.1016/j.brainres.2007.07.025

    Article  CAS  PubMed  Google Scholar 

  87. Baccino T, Manunta Y (2005) Eye-fixation-related potentials: insight into parafoveal processing. J Psychophysiol 19(3):204–215

    Article  Google Scholar 

  88. Simola J, Holmqvist K, Lindgren M (2009) Right visual field advantage in parafoveal processing: evidence from eye-fixation-related potentials. Brain Lang 111(2):101–113

    Article  PubMed  Google Scholar 

  89. Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci 13(2):121

    Article  CAS  PubMed  Google Scholar 

  90. Singer W (2011) Dynamic formation of functional networks by synchronization. Neuron 69(2):191–193

    Article  CAS  PubMed  Google Scholar 

  91. von Stein A, Chiang C, König P (2000) Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci 97(26):14748–14753

    Article  Google Scholar 

  92. Bressler SL, Richter CG (2015) Interareal oscillatory synchronization in top-down neocortical processing. Curr Opin Neurobiol 31:62–66

    Article  CAS  PubMed  Google Scholar 

  93. Bastiaansen M, Hagoort P (2006) Oscillatory neuronal dynamics during language comprehension. Prog Brain Res 159:179–196

    Article  PubMed  Google Scholar 

  94. Lewis AG, Wang L, Bastiaansen M (2015) Fast oscillatory dynamics during language comprehension: unification versus maintenance and prediction? Brain Lang 148:51–63

    Article  PubMed  Google Scholar 

  95. Picton TW, van Roon P, Armilio ML, Berg P, Ille N, Scherg M (2000) The correction of ocular artifacts: a topographic perspective. Clin Neurophysiol 111(1):53–65

    Article  CAS  PubMed  Google Scholar 

  96. Berg P, Scherg M (1991) Dipole modelling of eye activity and its application to the removal of eye artefacts from the EEG and MEG. Clin Phys Physiol Meas 12(A):49

    Article  PubMed  Google Scholar 

  97. López-Peréz PJ, Dampuré J, Hernández-Cabrera JA, Barber HA (2016) Semantic parafoveal-on-foveal effects and preview benefits in reading: evidence from fixation related potentials. Brain Lang 162:29–34

    Article  PubMed  Google Scholar 

  98. Dimigen O, Kliegl R, Sommer W (2012) Trans-saccadic parafoveal preview benefits in fluent reading: a study with fixation-related brain potentials. NeuroImage 62:381–393. https://doi.org/10.1016/j.neuroimage.2012.04.006

    Article  PubMed  Google Scholar 

  99. Nikolaev AR, Meghanathan RN, van Leeuwen C (2016) Combining EEG and eye movement recording in free viewing: pitfalls and possibilities. Brain Cogn 107:55–83

    Article  PubMed  Google Scholar 

  100. Croft RJ, Barry RJ (2000) Removal of ocular artifact from the EEG: a review. Neurophysiologie Clinique/Clin Neurophysiol 30(1):5–19

    Article  CAS  Google Scholar 

  101. Delorme A, Sejnowski T, Makeig S (2007) Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage 34(4):1443–1449

    Article  PubMed  Google Scholar 

  102. Ille N, Berg P, Scherg M (2002) Artifact correction of the ongoing EEG using spatial filters based on artifact and brain signal topographies. J Clin Neurophysiol 19(2):113–124

    Article  PubMed  Google Scholar 

  103. Dimigen O, Sommer W, Hohlfeld A et al (2011) Coregistration of eye movements and EEG in natural reading: analyses and review. J Exp Psychol–Gen 140:552–572. https://doi.org/10.1037/a0023885

    Article  PubMed  Google Scholar 

  104. Plöchl M, Ossandón JP, König P (2012) Combining EEG and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data. Front Hum Neurosci 6:278

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ries AJ, Slayback D, Touryan J (2018) The fixation-related lambda response: effects of saccade magnitude, spatial frequency, and ocular artifact removal. Int J Psychophysiol 134:1–8

    Article  PubMed  Google Scholar 

  106. Shtyrov Y, Nikulin VV, Pulvermüller F (2010) Rapid cortical plasticity underlying novel word learning. J Neurosci 30(50):16864–16867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shtyrov Y (2011) Fast mapping of novel word forms traced neurophysiologically. Front Psychol 2:340

    Article  PubMed  PubMed Central  Google Scholar 

  108. Partanen EJ, Leminen A, Cook C, Shtyrov Y (2018) Formation of neocortical memory circuits for unattended written word forms: neuromagnetic evidence. Sci Rep 8(1):1–10

    Article  Google Scholar 

  109. Hauk O, Pulvermüller F (2004) Neurophysiological distinction of action words in the fronto-central cortex. Hum Brain Mapp 21(3):191–201

    Article  PubMed  PubMed Central  Google Scholar 

  110. Pulvermüller F, Shtyrov Y, Hauk O (2009) Understanding in an instant: neurophysiological evidence for mechanistic language circuits in the brain. Brain Lang 110(2):81–94

    Article  PubMed  PubMed Central  Google Scholar 

  111. Metzner P, von der Malsburg T, Vasishth S et al (2015) Brain responses to world knowledge violations: a comparison of stimulus-and fixation-triggered event-related potentials and neural oscillations. J Cogn Neurosci 27(5):1017–1028

    Article  PubMed  Google Scholar 

  112. Kretzschmar F, Bornkessel-Schlesewsky I, Schlesewsky M (2009) Parafoveal versus foveal N400s dissociate spreading activation from contextual fit. Neuroreport 20:1613–1618. https://doi.org/10.1097/WNR.0b013e328332c4f4

    Article  PubMed  Google Scholar 

  113. Kretzschmar F, Schlesewsky M, Staub A (2015) Dissociating word frequency and predictability effects in reading: evidence from coregistration of eye movements and EEG. J Exp Psychol Learn Mem Cogn 41(6):1648

    Article  PubMed  Google Scholar 

  114. Li N, Niefind F, Wang S, Sommer W, Dimigen O (2015) Parafoveal processing in reading Chinese sentences: evidence from event-related brain potentials. Psychophysiology 52(10):1361–1374

    Article  PubMed  Google Scholar 

  115. Takeda Y, Sugai M, Yagi A (2001) Eye fixation related potentials in a proof-reading task. Int J Psychophysiol 40(3):181–186

    Article  CAS  PubMed  Google Scholar 

  116. Dimigen O, Sommer W, Kliegl R (2007) Long reading regressions are accompanied by a P600-like brain potential. J Eye Mov Res 1:129

    Google Scholar 

  117. Vignali L, Himmelstoss NA, Hawelka S et al (2016) Oscillatory brain dynamics during sentence reading: a fixation-related spectral perturbation analysis. Front Hum Neurosci 10:191

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kornrumpf B, Dimigen O, Sommer W (2017) Lateralization of posterior alpha EEG reflects the distribution of spatial attention during saccadic reading. Psychophysiology 54(6):809–823

    Article  PubMed  Google Scholar 

  119. Fischer T, Graupner ST, Velichkovsky BM, Pannasch S (2013) Attentional dynamics during free picture viewing: evidence from oculomotor behavior and electrocortical activity. Front Syst Neurosci 7:17

    Article  PubMed  PubMed Central  Google Scholar 

  120. Nikolaev AR, Nakatani C, Plomp G et al (2011) Eye fixation-related potentials in free viewing identify encoding failures in change detection. NeuroImage 56(3):1598–1607

    Article  PubMed  Google Scholar 

  121. Nikolaev AR, Jurica P, Nakatani C et al (2013) Visual encoding and fixation target selection in free viewing: presaccadic brain potentials. Front Syst Neurosci 7:26

    Article  PubMed  PubMed Central  Google Scholar 

  122. Simola J, Le Fevre K, Torniainen J et al (2015) Affective processing in natural scene viewing: valence and arousal interactions in eye-fixation-related potentials. NeuroImage 106:21–33

    Article  PubMed  Google Scholar 

  123. Simola J, Torniainen J, Moisala M et al (2013) Eye movement related brain responses to emotional scenes during free viewing. Front Syst Neurosci 7:41

    Article  PubMed  PubMed Central  Google Scholar 

  124. Himmelstoss NA, Schuster S, Hutzler F, Moran R, Hawelka S (2019) Co-registration of eye movements and neuroimaging for studying contextual predictions in natural reading. Lang Cogn Neurosci:1–18

    Google Scholar 

  125. Stawicki P, Gembler F, Rezeika A, Volosyak I (2017) A novel hybrid mental spelling application based on eye tracking and SSVEP-based BCI. Brain Sci 7(4):35

    Article  PubMed  PubMed Central  Google Scholar 

  126. Gembler F, Stawicki P, Saboor A, Volosyak I (2019) Dynamic time window mechanism for time synchronous VEP-based BCIs—performance evaluation with a dictionary-supported BCI speller employing SSVEP and c-VEP. PLoS One 14(6):e0218177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhao M, Gao H, Wang W, Qu J (2020) Research on human-computer interaction intention recognition based on EEG and eye movement. IEEE Access 8:145824–145832

    Article  Google Scholar 

Download references

Acknowledgment

The reported study was funded by RFBR, project number 19-313-51023.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pokhoday, M., Bermúdez-Margaretto, B., Malyshevskaya, A., Kotrelev, P., Shtyrov, Y., Myachykov, A. (2023). Eye-Tracking Methods in Psycholinguistics. In: Grimaldi, M., Brattico, E., Shtyrov, Y. (eds) Language Electrified. Neuromethods, vol 202. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3263-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3263-5_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3262-8

  • Online ISBN: 978-1-0716-3263-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics