Skip to main content

Retinal Assessment Using In Vivo Electroretinography and Optical Coherence Tomography in Rodent Models of Diabetes

  • Protocol
  • First Online:
Diabetic Retinopathy

Abstract

Electroretinography and optical coherence tomography imaging allow for non-invasive quantitative assessment of the retina. These approaches have become mainstays for identifying the very earliest impact of hyperglycemia on retinal function and structure in animal models of diabetic eye disease. Moreover, they are essential for assessing the safety and efficacy of novel treatment approaches for diabetic retinopathy. Here, we describe approaches for in vivo electroretinography and optical coherence tomography imaging in rodent models of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grillo SL, Koulen P (2015) Psychophysical testing in rodent models of glaucomatous optic neuropathy. Exp Eye Res 141:154–163. https://doi.org/10.1016/j.exer.2015.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leinonen H, Tanila H (2018) Vision in laboratory rodents-tools to measure it and implications for behavioral research. Behav Brain Res 352:172–182. https://doi.org/10.1016/j.bbr.2017.07.040

    Article  PubMed  Google Scholar 

  3. Pinto LH, Enroth-Cugell C (2000) Tests of the mouse visual system. Mamm Genome 11(7):531–536. https://doi.org/10.1007/s003350010102

    Article  CAS  PubMed  Google Scholar 

  4. Frishman L (2006) Origins of the electroretinogram. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. The MIT Press, Cambridge, pp 139–184

    Google Scholar 

  5. Granit R (1933) Components of the retinal action potential in mammals and their relations to the discharge in the optic nerve. J Physiol 77:207–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weymouth AE, Vingrys AJ (2008) Rodent electroretinography: methods for extraction and interpretation of rod and cone responses. Prog Retin Eye Res 27(1):1–44. https://doi.org/10.1016/j.preteyeres.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  7. Qiu F, Zhu M, Le YZ (2019) Noninvasive diagnosis of regional alteration of retinal morphology and structure with optical coherence tomography in rodents. Adv Exp Med Biol 1185:151–155. https://doi.org/10.1007/978-3-030-27378-1_25

    Article  CAS  PubMed  Google Scholar 

  8. Mills SA, Jobling AI, Dixon MA, Bui BV, Vessey KA, Phipps JA, Greferath U, Venables G, Wong VHY, Wong CHY, He Z, Hui F, Young JC, Tonc J, Ivanova E, Sagdullaev BT, Fletcher EL (2021) Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic retinopathy. Proc Natl Acad Sci U S A 118(51). https://doi.org/10.1073/pnas.2112561118

  9. Zhao D, Nguyen CT, Wong VH, Lim JK, He Z, Jobling AI, Fletcher EL, Chinnery HR, Vingrys AJ, Bui BV (2017) Characterization of the circumlimbal suture model of chronic IOP elevation in mice and assessment of changes in gene expression of stretch sensitive channels. Front Neurosci 11:41. https://doi.org/10.3389/fnins.2017.00041

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhao D, Wong VHY, Nguyen CTO, Jobling AI, Fletcher EL, Vingrys AJ, Bui BV (2019) Reversibility of retinal ganglion cell dysfunction from chronic IOP elevation. Invest Ophthalmol Vis Sci 60(12):3878–3886. https://doi.org/10.1167/iovs.19-27113

    Article  CAS  PubMed  Google Scholar 

  11. Lamb TD, Pugh ENJ (1992) A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol 449:719–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Naka KI, Rushton WA (1966) S-potentials from colour units in the retina of fish (cyprinidae). J Physiol 185(3):536–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wachtmeister L (1998) Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res 17(4):485–521

    Article  CAS  PubMed  Google Scholar 

  14. Bui BV, Fortune B (2004) Ganglion cell contributions to the rat full-field electroretinogram. J Physiol 555(Pt 1):153–173

    Article  CAS  PubMed  Google Scholar 

  15. Zhao D, He Z, Wang L, Fortune B, Lim JKH, Wong VHY, Nguyen CTO, Bui BV (2020) Response of the trilaminar retinal vessel network to intraocular pressure elevation in rat eyes. Invest Ophthalmol Vis Sci 61(2):2. https://doi.org/10.1167/iovs.61.2.2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kohzaki K, Vingrys AJ, Armitage JA, Bui BV (2013) Electroretinography in streptozotocin diabetic rats following acute intraocular pressure elevation. Graefes Arch Clin Exp Ophthalmol 251(2):529–535. https://doi.org/10.1007/s00417-012-2212-4

    Article  PubMed  Google Scholar 

  17. Saszik SM, Robson JG, Frishman LJ (2002) The scotopic threshold response of the dark-adapted electroretinogram of the mouse. J Physiol 543(Pt 3):899–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang V. Bui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhao, D. et al. (2023). Retinal Assessment Using In Vivo Electroretinography and Optical Coherence Tomography in Rodent Models of Diabetes. In: Liu, GS., Wang, JH. (eds) Diabetic Retinopathy. Methods in Molecular Biology, vol 2678. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3255-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3255-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3254-3

  • Online ISBN: 978-1-0716-3255-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics