Skip to main content

Creating Selenocysteine-Specific Reporters Using Inteins

  • Protocol
  • First Online:
Genetically Incorporated Non-Canonical Amino Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2676))

  • 722 Accesses

Abstract

The selenium moiety in selenocysteine (Sec) imparts enhanced chemical properties to this amino acid and ultimately the protein in which it is inserted. These characteristics are attractive for designing highly active enzymes or extremely stable proteins and studying protein folding or electron transfer, to name a few. There are also 25 human selenoproteins, of which many are essential for our survival. The ability to create or study these selenoproteins is significantly hindered by the inability to easily produce them. Engineering translation has yielded simpler systems to facilitate site-specific insertion of Sec; however, Ser misincorporation remains problematic. Therefore, we have designed two Sec-specific reporters which promote high-throughput screening of Sec translation systems to overcome this barrier. This protocol outlines the workflow to engineer these Sec-specific reporters, with the application to any gene of interest and the ability to transfer this strategy to any organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meng K, Chung CZ, Söll D, Krahn N (2022) Unconventional genetic code systems in archaea. Front Microbiol 13:1007832. https://doi.org/10.3389/fmicb.2022.1007832

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chung CZ, Krahn N (2022) The selenocysteine toolbox: a guide to studying the 21st amino acid. Arch Biochem Biophys 730:109421. https://doi.org/10.1016/j.abb.2022.109421

    Article  CAS  PubMed  Google Scholar 

  3. Mukai T, Sevostyanova A, Suzuki T, Fu X, Söll D (2018) A facile method for producing selenocysteine-containing proteins. Angew Chem Int Ed Engl 57(24):7215–7219. https://doi.org/10.1002/anie.201713215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aldag C, Bröcker MJ, Hohn MJ, Prat L, Hammond G, Plummer A, Söll D (2013) Rewiring translation for elongation factor Tu-dependent selenocysteine incorporation. Angew Chem Int Ed Engl 52(5):1441–1445. https://doi.org/10.1002/anie.201207567

    Article  CAS  PubMed  Google Scholar 

  5. Thyer R, Robotham SA, Brodbelt JS, Ellington AD (2015) Evolving tRNASec for efficient canonical incorporation of selenocysteine. J Am Chem Soc 137(1):46–49. https://doi.org/10.1021/ja510695g

    Article  CAS  PubMed  Google Scholar 

  6. Miller C, Bröcker MJ, Prat L, Ip K, Chirathivat N, Feiock A, Veszpremi M, Söll D (2015) A synthetic tRNA for EF-Tu mediated selenocysteine incorporation in vivo and in vitro. FEBS Lett 589(17):2194–2199. https://doi.org/10.1016/j.febslet.2015.06.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Majiduddin FK, Palzkill T (2003) Amino acid sequence requirements at residues 69 and 238 for the SME-1 beta-lactamase to confer resistance to beta-lactam antibiotics. Antimicrob Agents Chemother 47(3):1062–1067. https://doi.org/10.1128/AAC.47.3.1062-1067.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thyer R, Shroff R, Klein DR, d’Oelsnitz S, Cotham VC, Byrom M, Brodbelt JS, Ellington AD (2018) Custom selenoprotein production enabled by laboratory evolution of recoded bacterial strains. Nat Biotechnol 36(7):624–631. https://doi.org/10.1038/nbt.4154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chung CZ, Krahn N, Crnković A, Söll D (2022) Intein-based design expands diversity of selenocysteine reporters. J Mol Biol 434(8):167199. https://doi.org/10.1016/j.jmb.2021.167199

    Article  CAS  PubMed  Google Scholar 

  10. Shah NH, Muir TW (2014) Inteins: nature’s gift to protein chemists. Chem Sci 5(1):446–461. https://doi.org/10.1039/C3SC52951G

    Article  CAS  PubMed  Google Scholar 

  11. Mills KV, Johnson MA, Perler FB (2014) Protein splicing: how inteins escape from precursor proteins. J Biol Chem 289(21):14498–14505. https://doi.org/10.1074/jbc.R113.540310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Appleby-Tagoe JH, Thiel IV, Wang Y, Wang Y, Mootz HD, Liu XQ (2011) Highly efficient and more general cis- and trans-splicing inteins through sequential directed evolution. J Biol Chem 286(39):34440–34447. https://doi.org/10.1074/jbc.M111.277350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stevens AJ, Sekar G, Shah NH, Mostafavi AZ, Cowburn D, Muir TW (2017) A promiscuous split intein with expanded protein engineering applications. Proc Natl Acad Sci U S A 114(32):8538–8543. https://doi.org/10.1073/pnas.1701083114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marshall CJ, Grosskopf VA, Moehling TJ, Tillotson BJ, Wiepz GJ, Abbott NL, Raines RT, Shusta EV (2015) An evolved Mxe GyrA intein for enhanced production of fusion proteins. ACS Chem Biol 10(2):527–538. https://doi.org/10.1021/cb500689g

    Article  CAS  PubMed  Google Scholar 

  15. Phillips GJ, Park SK, Huber D (2000) High copy number plasmids compatible with commonly used cloning vectors. BioTechniques 28(3):400–408. https://doi.org/10.2144/00283bm02

    Article  CAS  PubMed  Google Scholar 

  16. Tharp JM, Ad O, Amikura K, Ward FR, Garcia EM, Cate JHD, Schepartz A, Söll D (2020) Initiation of protein synthesis with non-canonical amino acids in vivo. Angew Chem Int Ed Engl 59(8):3122–3126. https://doi.org/10.1002/anie.201914671

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Oscar Vargas-Rodriguez and Kexin Meng for experimental advice and helpful discussions.

This work was supported by grants from the National Institute of General Medical Sciences (R35GM122560-05S1 to D.S.) and, for the genetic studies, the Department of Energy Office of Basic Energy Sciences (DE-FG0298ER2031 to D.S.). Christina Z. Chung holds a Postdoctoral Fellowship from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie Krahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chung, C.Z., Söll, D., Krahn, N. (2023). Creating Selenocysteine-Specific Reporters Using Inteins. In: Tsai, YH., Elsässer, S.J. (eds) Genetically Incorporated Non-Canonical Amino Acids. Methods in Molecular Biology, vol 2676. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3251-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3251-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3250-5

  • Online ISBN: 978-1-0716-3251-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics