Skip to main content

Focused Engineering of Pyrrolysyl-tRNA Synthetase-Based Orthogonal Translation Systems for the Incorporation of Various Noncanonical Amino Acids

  • Protocol
  • First Online:
Genetically Incorporated Non-Canonical Amino Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2676))

Abstract

The expansion of the genetic code has become a valuable tool for molecular biology, biochemistry, and biotechnology. The pyrrolysyl-tRNA synthetase (PylRS) variants with their cognate tRNAPyl derived from methanogenic archaea of the genus Methanosarcina are the most popular tools for ribosomally mediated site-specific and proteome-wide statistical incorporation of noncanonical amino acids (ncAAs) into proteins. The incorporation of ncAAs can be used for numerous biotechnological and even therapeutically relevant applications. Here we present a protocol of engineering PylRS for novel substrates with unique chemical functionalities. These functional groups can act as intrinsic probes, especially in complex biological environments such as mammalian cells, tissues, and even whole animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mukai T, Lajoie MJ, Englert M, Söll D (2017) Rewriting the genetic code. Annu Rev Microbiol 71:557–577. https://doi.org/10.1146/annurev-micro-090816-093247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chin JW (2017) Expanding and reprogramming the genetic code. Nature 550:53–60. https://doi.org/10.1038/nature24031

    Article  CAS  PubMed  Google Scholar 

  3. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444. https://doi.org/10.1146/annurev.biochem.052308.105824

    Article  CAS  PubMed  Google Scholar 

  4. Groff D, Thielges MC, Cellitti S, Schultz PG, Romesberg FE (2009) Efforts toward the direct experimental characterization of enzyme microenvironments: tyrosine 100 in dihydrofolate reductase. Angew Chem Int Ed 48:3478–3481. https://doi.org/10.1002/anie.200806239

    Article  CAS  Google Scholar 

  5. Baumann T, Hauf M, Schildhauer F, Eberl KB, Durkin PM, Deniz E, Löffler JG, Acevedo-Rocha CG, Jaric J, Martins BM, Dobbek H, Bredenbeck J, Budisa N (2019) Site-resolved observation of vibrational energy transfer using a genetically encoded ultrafast heater. Angew Chem Int Ed 58:2899–2903. https://doi.org/10.1002/anie.201812995

    Article  CAS  Google Scholar 

  6. Minnihan EC, Young DD, Schultz PG, Stubbe J (2011) Incorporation of fluorotyrosines into ribonucleotide reductase using an evolved, polyspecific aminoacyl-tRNA synthetase. J Am Chem Soc 133:15942–15945. https://doi.org/10.1021/ja207719f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li JC, Nastertorabi F, Xuan W, Han GW, Stevens RC, Schultz PG (2019) A single reactive noncanonical amino acid is able to dramatically stabilize protein structure. ACS Chem Biol 14:1150–1153. https://doi.org/10.1021/acschembio.9b00002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Agostini F, Völler JS, Koksch B, Acevedo-Rocha CG, Kubyshkin V, Budisa N (2017) Biocatalysis with unnatural amino acids: enzymology meets xenobiology. Angew Chem Int Ed 56:9680–9703. https://doi.org/10.1002/anie.201610129

    Article  CAS  Google Scholar 

  9. Drienovská I, Mayer C, Dulson C, Roelfes G (2018) A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue. Nat Chem 10:946–952. https://doi.org/10.1038/s41557-018-0082-z

    Article  CAS  PubMed  Google Scholar 

  10. Burke AJ, Lovelock SL, Frese A, Crawshaw R, Ortmayer M, Dunstan M, Levy C, Green AP (2019) Design and evolution of an enzyme with a non-canonical organocatalytic mechanism. Nature 570:219–223. https://doi.org/10.1038/s41586-019-1262-8

    Article  CAS  PubMed  Google Scholar 

  11. Barney BM, LoBrutto R, Francisco WA (2004) Characterization of a small metal binding protein from nitrosomonas europaea. Biochemistry 43:11206–11213. https://doi.org/10.1021/bi049318k

    Article  CAS  PubMed  Google Scholar 

  12. Vargas-Cortez T, Morones-Ramirez JR, Balderas-Renteria I, Zarate X (2016) Expression and purification of recombinant proteins in Escherichia coli tagged with a small metal-binding protein from Nitrosomonas europaea. Protein Expr Purif 118:49–54. https://doi.org/10.1016/j.pep.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  13. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2022) ColabFold: making protein folding accessible to all. Nat Methods 19:679–682. https://doi.org/10.1038/s41592-022-01488-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Suzuki T, Miller C, Guo LT, Ho JML, Bryson DI, Wang YS, Liu DR, Söll D (2017) Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase. Nat Chem Biol 13:1261–1266. https://doi.org/10.1038/nchembio.2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nozawa K, O’Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Söll D, Nureki O (2009) Pyrrolysyl-tRNA synthetase-tRNAPyl structure reveals the molecular basis of orthogonality. Nature 457:1163–1167. https://doi.org/10.1038/nature07611

    Article  CAS  PubMed  Google Scholar 

  16. Wan W, Tharp JM, Liu WR (2014) Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim Biophys Acta Proteins Proteom 1844:1059–1070. https://doi.org/10.1016/j.bbapap.2014.03.002

    Article  CAS  Google Scholar 

  17. Kavran JM, Gundllapalli S, O’Donoghue P, Englert M, Söll D, Steitz TA (2007) Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation. Proc Natl Acad Sci U S A 104:11268–11273. https://doi.org/10.1073/pnas.0704769104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang YS, Russell WK, Wang Z, Wan W, Dodd LE, Pai PJ, Russell DH, Liu WR (2011) The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of l-phenylalanine and its derivatives. Mol BioSyst 7:714–717. https://doi.org/10.1039/c0mb00217h

    Article  CAS  PubMed  Google Scholar 

  19. Koch NG, Goettig P, Rappsilber J, Budisa N (2021) Engineering pyrrolysyl-tRNA synthetase for the incorporation of non-canonical amino acids with smaller side chains. Int J Mol Sci 22:11194. https://doi.org/10.3390/ijms222011194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koch NG, Budisa N (2021) Pyrrolysyl-tRNA-synthetase: methanogenese und gencode-erweiterung. BIOspektrum 27:616–619. https://doi.org/10.1007/s12268-021-1653-x

    Article  CAS  Google Scholar 

  21. Takimoto JK, Dellas N, Noel JP, Wang L (2011) Stereochemical basis for engineered pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of structurally divergent non-native amino acids. ACS Chem Biol 6:733–743. https://doi.org/10.1021/cb200057a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koch NG, Baumann T, Budisa N (2021) Efficient unnatural protein production by pyrrolysyl-tRNA synthetase with genetically fused solubility tags. Front Bioeng Biotechnol 9:1–14. https://doi.org/10.3389/fbioe.2021.807438

    Article  Google Scholar 

  23. Schmidt MJ, Summerer D (2018) Directed evolution of orthogonal pyrrolysyl-tRNA synthetases in Escherichia coli for the genetic encoding of noncanonical amino acids. In: Lemke E (ed) Noncanonical amino acids. Methods in molecular biology, vol 1728. Humana Press, New York, pp 97–111

    Chapter  Google Scholar 

  24. Lacey VK, Louie GV, Noel JP, Wang L (2013) Expanding the library and substrate diversity of the pyrrolysyl-tRNA synthetase to incorporate unnatural amino acids containing conjugated rings. Chembiochem 14:2100–2105. https://doi.org/10.1002/cbic.201300400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2:891–903. https://doi.org/10.1038/nprot.2007.72

    Article  CAS  PubMed  Google Scholar 

  26. Nov Y (2012) When second best is good enough: another probabilistic look at saturation mutagenesis. Appl Environ Microbiol 78:258–262. https://doi.org/10.1128/AEM.06265-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hauf M, Richter F, Schneider T, Faidt T, Martins BM, Baumann T, Durkin P, Dobbek H, Jacobs K, Möglich A, Budisa N (2017) Photoactivatable mussel-based underwater adhesive proteins by an expanded genetic code. Chembiochem 18:1819–1823. https://doi.org/10.1002/cbic.201700327

    Article  CAS  PubMed  Google Scholar 

  28. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234. https://doi.org/10.1016/j.pep.2005.01.016

    Article  CAS  PubMed  Google Scholar 

  29. Dominy CN, Andrews DW (2003) Site-directed mutagenesis by inverse PCR. In: Casali N, Preston A (eds) E. coli plasmid vectors. Methods in molecular biology, vol 235. Humana Press, Totowa, pp 209–223

    Chapter  Google Scholar 

  30. Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S (2008) Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode Nɛ-(o-Azidobenzyloxycarbonyl) lysine for site-specific protein modification. Chem Biol 15:1187–1197. https://doi.org/10.1016/j.chembiol.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  31. Hohl A, Karan R, Akal A, Renn D, Liu X, Ghorpade S, Groll M, Rueping M, Eppinger J (2019) Engineering a polyspecific pyrrolysyl-tRNA synthetase by a high throughput FACS screen. Sci Rep 9:11971. https://doi.org/10.1038/s41598-019-48357-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nediljko Budisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Koch, N.G., Budisa, N. (2023). Focused Engineering of Pyrrolysyl-tRNA Synthetase-Based Orthogonal Translation Systems for the Incorporation of Various Noncanonical Amino Acids. In: Tsai, YH., Elsässer, S.J. (eds) Genetically Incorporated Non-Canonical Amino Acids. Methods in Molecular Biology, vol 2676. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3251-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3251-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3250-5

  • Online ISBN: 978-1-0716-3251-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics