Skip to main content

Measurement of Fatty Acid Oxidation by High-Resolution Respirometry: Special Considerations for Analysis of Skeletal and Cardiac Muscle and Adipose Tissue

  • Protocol
  • First Online:
Metabolic Reprogramming

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2675))

Abstract

High-resolution respirometry is a state-of-the-art approach for the quantitation of mitochondrial function. Isolated mitochondria, cultured cells, or tissues/fibers are suspended in oxygenated respiration medium within a closed chamber and substrates or inhibitors added in a stepwise manner. The dissolved oxygen concentration decreases as aerobic metabolism in the specimen proceeds, recorded by an oxygen sensor within the chamber to give a quantifiable measure of oxygen consumption by the sample. Measuring oxygen consumption using a variety of respiratory substrates or respiratory complex-targeted inhibitors enables multiple respiratory pathways to be interrogated to determine the functional capacity of the mitochondria in real time. Using a substrate-uncoupler-inhibitor titration (SUIT) protocol, we have developed a method which makes use of differing chain length fatty acids to derive a measure of fatty acid-stimulated respiration through β-oxidation in a variety of tissue types including skeletal and cardiac muscles and brown and white adipose tissues. This report provides technical details of the protocol, and the adaptations employed, to generate robust analysis of mitochondrial fatty acid β-oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holness M, Sugden M, Naish J (2015) Energy metabolism. In: Naish J, Syndercombe Court D (eds) Medical sciences, 2nd edn. Saunders Elsevier

    Google Scholar 

  2. Hirst J (2013) Mitochondrial complex I. Annu Rev Biochem 82:551–575

    Article  CAS  PubMed  Google Scholar 

  3. Bezawork-Galeta A, Rohlena J, Dong L, Pacal K, Neuzil J (2017) Mitochondrial complex II: at the crossroads. Trends Biochem Sci 42:312–325

    Article  Google Scholar 

  4. Sousa JS, D’Imprima E, Vonck J (2018) Mitochondrial respiratory chain complexes. Subcell Biochem 87:167–227

    Article  CAS  PubMed  Google Scholar 

  5. Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS (2008) Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3: 965-976

    Google Scholar 

  6. Gnaiger E (2014) Mitochondrial pathways to Complex I: respiratory substrate control with pyruvate, malate and glutamate. In: Gnaiger E (ed) Mitochondrial pathways and respiratory control: an introduction to OXPHOS analysis. OROBOROS MiPNet Publications

    Google Scholar 

  7. Ruas JS, Siqueira-Santos ES, Rodrigues-Silva E, Castilho RF (2018) High glycolytic activity of tumor cells leads to underestimation of electron transport system capacity when mitochondrial ATP synthase is inhibited. Sci Rep 8:17383. https://doi.org/10.1038/s41598-018-35679-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fato R, Bergamini C, Bortolus M, Maniero AL, Leoni S, Ohnishi T, Lenaz G (2009) Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species. Biochim Biophys Acta 1787:384–392

    Article  CAS  PubMed  Google Scholar 

  9. Vamecq J, Schepers L, Parmentier G, Mannaerts GP (1987) Inhibition of peroxisomal fatty acyl-CoA oxidase by antimycin A. Biochem J 248:603–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gnaiger E, Kuznetsov AV (2002) Mitochondrial respiration at low levels of oxygen and cytochrome C. Biochem Soc Trans 30:242–248

    Article  Google Scholar 

  11. Rousset S, Alves-Guerra M-C, Mozo J, Miroux B, Cassard-Doulcier A-M, Bouillaud F, Ricquier D (2004) The biology of mitochondrial uncoupling proteins. Diabetes 53(Suppl 1):S130–S135

    Article  CAS  PubMed  Google Scholar 

  12. Gnaiger E, Kutnetsov A, Schneeberger S, Seiler S, Brandacher G, Steurer W, Margreiter R (2000) Mitochondria in the cold. In: Heldmaier E, Klingenspor M (eds) Life in the cold: eleventh international hibernation symposium Austria, August 2000, Berlin, New York Springer, p 431. https://doi.org/10.1007/978-3-662-04162-8

  13. McFarlane SV, Mathers KE, Staples JF (2017) Reversible temperature-dependent differences in brown adipose tissue respiration during torpor in a mammalian hibernator. Am J Physiol Regul Integr Comp Physiol 1:R434–R442

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from Diabetes UK (16/0005382; 19/0006049) and the Biotechnology and Biological Sciences Research Council (BB/T004231/1). ADVM is supported by a British Heart Foundation PhD studentship (FS/18/61/34182). LDR is supported by the Diabetes UK RD Lawrence Fellowship (16/0005382) and a Biotechnology and Biological Sciences Research Council Investigator Grant (BB/T004231/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee D. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Watt, N.T., MacCannell, A.D.V., Roberts, L.D. (2023). Measurement of Fatty Acid Oxidation by High-Resolution Respirometry: Special Considerations for Analysis of Skeletal and Cardiac Muscle and Adipose Tissue. In: Papa, S., Bubici, C. (eds) Metabolic Reprogramming. Methods in Molecular Biology, vol 2675. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3247-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3247-5_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3246-8

  • Online ISBN: 978-1-0716-3247-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics