Skip to main content

Real-Time Monitoring of Hydrogen Peroxide Levels in Yeast and Mammalian Cells

  • Protocol
  • First Online:
Metabolic Reprogramming

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2675))

  • 769 Accesses

Abstract

Hydrogen peroxide (H2O2) is an important signaling molecule involved in regulating antioxidative transcriptional responses, cellular differentiation, and hypoxia response. H2O2 generation and signaling are highly localized processes. Understanding the dynamics of this molecule inside intact cells with subcompartmental resolution is instrumental to unravel its role in cellular signaling. Different genetically encoded fluorescent sensors have been developed over the last few years that enable such non-disruptive monitoring with high spatiotemporal resolution. In this chapter, we describe the use of these genetically encoded sensors to directly monitor H2O2 dynamics in yeast and cultured mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brand MD (2020) Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 55:592–661

    Article  CAS  PubMed  Google Scholar 

  2. Mailloux RJ (2015) Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol 4:381–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21:363–383

    Article  CAS  PubMed  Google Scholar 

  4. Dikova V, Vorhauser J, Geng A, Pelster B, Sandbichler AM (2020) Metabolic interaction of hydrogen peroxide and hypoxia in zebrafish fibroblasts. Free Radic Biol Med 152:469–481

    Article  CAS  PubMed  Google Scholar 

  5. Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R et al (2013) Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 15:222–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peralta D, Bronowska AK, Morgan B, Doka E, Van Laer K et al (2015) A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat Chem Biol 11:156–163

    Article  CAS  PubMed  Google Scholar 

  7. Yoo SK, Starnes TW, Deng Q, Huttenlocher A (2011) Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480:109–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Plecita-Hlavata L, Engstova H, Holendova B, Tauber J, Spacek T et al (2020) Mitochondrial superoxide production decreases on glucose-stimulated insulin secretion in pancreatic beta cells due to decreasing mitochondrial matrix NADH/NAD(+) ratio. Antioxid Redox Signal 33:789–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee YM, He W, Liou YC (2021) The redox language in neurodegenerative diseases: oxidative post-translational modifications by hydrogen peroxide. Cell Death Dis 12:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  11. Panday A, Sahoo MK, Osorio D, Batra S (2015) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12:5–23

    Article  CAS  PubMed  Google Scholar 

  12. Calabrese G, Morgan B, Riemer J (2017) Mitochondrial glutathione: regulation and functions. Antioxid Redox Signal 27:1162–1177

    Article  CAS  PubMed  Google Scholar 

  13. Roma LP, Deponte M, Riemer J, Morgan B (2018) Mechanisms and applications of redox-sensitive green fluorescent protein-based hydrogen peroxide probes. Antioxid Redox Signal 29:552–568

    Article  CAS  PubMed  Google Scholar 

  14. Kalinovic S, Oelze M, Kroller-Schon S, Steven S, Vujacic-Mirski K et al (2019) Comparison of mitochondrial superoxide detection ex vivo/in vivo by mitoSOX HPLC method with classical assays in three different animal models of oxidative stress. Antioxidants 8:514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morgan B, Van Laer K, Owusu TN, Ezerina D, Pastor-Flores D et al (2016) Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat Chem Biol 12:437–443

    Article  CAS  PubMed  Google Scholar 

  16. Calabrese G, Peker E, Amponsah PS, Hoehne MN, Riemer T et al (2019) Hyperoxidation of mitochondrial peroxiredoxin limits H2 O2 -induced cell death in yeast. EMBO J 38:e101552

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pak VV, Ezerina D, Lyublinskaya OG, Pedre B, Tyurin-Kuzmin PA et al (2020) Ultrasensitive genetically encoded indicator for hydrogen peroxide identifies roles for the oxidant in cell migration and mitochondrial function. Cell Metab 31:642-653e6

    Article  Google Scholar 

  18. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA et al (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053

    Article  CAS  PubMed  Google Scholar 

  19. Fischer M, Horn S, Belkacemi A, Kojer K, Petrungaro C et al (2013) Protein import and oxidative folding in the mitochondrial intermembrane space of intact mammalian cells. Mol Biol Cell 24:2160–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoehne MN, Jacobs L, Lapacz KJ, Calabrese G, Murschall LM et al (2022) Spatial and temporal control of mitochondrial H2 O2 release in intact human cells. EMBO J 41:e109169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kojer K, Bien M, Gangel H, Morgan B, Dick TP et al (2012) Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state. EMBO J 31:3169–3182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kojer K, Peleh V, Calabrese G, Herrmann JM, Riemer J (2015) Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space. Mol Biol Cell 26:195–204

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mumberg D, Muller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122

    Article  CAS  PubMed  Google Scholar 

  24. Morgan B, Sobotta MC, Dick TP (2011) Measuring E(GSH) and H2O2 with roGFP2-based redox probes. Free Radic Biol Med 51:1943–1951

    Article  CAS  PubMed  Google Scholar 

  25. Fricker MD (2016) Quantitative redox imaging software. Antioxid Redox Signal 24:752–762

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Deutsche Forschungsgemeinschaft (DFG) funds research in the laboratory of J.R. through grants RI2150/2-2-project number 251546152, RI2150/5-1-project number 435235019, CRC1218 / TP B02-project number 269925409, and RTG2550/1-project number 411422114. G.C. is currently supported by a DFG Walter Benjamin fellowship (CA 2559/1-1) and a MSFHR Research Trainee fellowship (RT-2020-0517). Figure design and original hand-drawn artworks are by G.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Riemer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Calabrese, G., Jacobs, L.J.H.C., Riemer, J. (2023). Real-Time Monitoring of Hydrogen Peroxide Levels in Yeast and Mammalian Cells. In: Papa, S., Bubici, C. (eds) Metabolic Reprogramming. Methods in Molecular Biology, vol 2675. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3247-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3247-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3246-8

  • Online ISBN: 978-1-0716-3247-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics